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INTRODUCTION

At the turn of the 20th century, physics was starting
to look rather mature and polished. At about this time
Albert Michelson wrote,

“The more important fundamental laws and
facts of physical science have all been dis-
covered, and these are so firmly established
that the possibility of their ever being sup-
planted in consequence of new discoveries is
exceedingly remote. Nevertheless, it has been
found that there are apparent exceptions to
most of these laws, and this is particularly
true when the observations are pushed to a
limit, i.e., whenever the circumstances of ex-
periment are such that extreme cases can be
examined. Such examination almost surely
leads, not to the overthrow of the law, but to
the discovery of other facts and laws whose
action produces the apparent exceptions.” [1]

However, there were already some indications that big
changes were on the horizon. One was the problem that
the version of ether theory in existence at the time could
not easily be reconciled with the results of the experiment
that Michelson had carried out with Morley. Another
was the so-called ultraviolet catastrophe that came about
with Lord Rayleigh’s 1900 version of the Rayleigh-Jeans
law of blackbody radiation.

THE PLANCK-EINSTEIN EQUATION

On December 14th 1900, Max Planck presented a
derivation of the blackbody radiation law that was based
on the assumption that electromagnetic radiation could
only be emitted in particle-like packets with a fixed ratio
of energy to frequency. This assumption can be written
as

E = hν

where ν is the frequency and h is a universal constant.
This equation came to be known as Planck’s equation,
though Planck did not initially consider it to be a real
physical law. In a letter to a colleague, he wrote

“To summarize, all what happened can be
described as simply an act of desperation...
This was a purely formal assumption and I
really did not give it much thought except
that, no matter what the cost, I must bring
about a positive result.” [2]

After all, light had been considered decisively wave-like
in nature since Thomas Young’s double-slit experiment
in 1803. However, in 1905, Albert Einstein explained the
photoelectric effect by suggesting that this equation was
physically true. Einstein also discovered that Planck’s
assumption provided a solution to the ultraviolet catas-
trophe, which is something Planck hadn’t been aware of.

Then in 1923, Arthur Compton performed an exper-
iment in which X-rays were scattered off electrons. His
results demonstrated that light must consist of particle-
like objects with energy proportional to frequency, thus
confirming Einstein’s suggestion.

THE DE BROGLIE EQUATION

After Einstein’s photoelectric theory and Compton’s
X-ray experiment, light had to be viewed as having both
particle and wave properties, but massive particles such
as electrons were still widely considered completely dis-
tinct from waves. However, puzzling questions about the
particle interpretation of electrons were already devel-
oping as early as 1913 with Niels Bohr’s model of the
Hydrogen atom. Bohr had succeeded in theoretically ex-
plaining the Rydberg formula for the emission specturm
of Hydrogen by assuming that the angular momentum of
the orbiting electron was restricted to integer multiples
of Planck’s constant h. Despite its impressive results,
Bohr’s model had many shortcomings. It was inconsis-
tent with several other observations, and theoretically
provided no justification for the quantization assumption.
This inspired Louis de Broglie to propose the idea that
all particles possess an associated matter wave.

“...the determination of the stable motions of
the electrons in the atom involves whole num-
bers, and so far the only phenomena in which
whole numbers were involved in physics were
those of interference and of eigenvibrations.
That suggested the idea to me that electrons
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themselves could not be represented as sim-
ple corpuscles either, but that a periodicity
had also to be assigned to them too.” [3]

He may have also been encouraged to take this leap by
Einstein’s work on the photoelectric effect.

“...I had a sudden inspiration. Einstein’s
wave-particle dualism was an absolutely gen-
eral phenomenon extending to all physical na-
ture.” [4]

The most famous equation to emerge from de Broglie’s
work was his relation between the momentum of a parti-
cle and the wavelength of its matter wave. Such a rela-
tion was already known for light quanta. By combining
the Planck-Einstein equation, E = hν, with the phase
velocity formula, c = λν, and the result from electro-
magnetism. E = pc (based on Poynting’s Theorem), one
can derive

p =
E

c
=
hν

λν
=
h

λ

In 1923, de Broglie suggested that if matter waves ex-
isted, they would also obey this equation. [5] He started
by making the assumption, now believed to be false, that
light quanta have some very small but non-zero mass.
Under this assumption, he equated the energy of a light
quantum given by the Planck-Einstein equation, E = hν,
with the relativistic energy of a massive particle given by
E = γmc2. In terms of the constants h̄ = h/2π and
ω = 2πν, this can be written as

h̄ω = γmc2

According to theory of relativity, this equation should
apply in all inertial reference frames. So in the rest frame
of the particle, where γ = 1, there should be a frequency
of oscillation ω0 such that

h̄ω0 = mc2

In this frame the particle is not moving, so this oscil-
lation would presumably look like a localized standing
wave. Now suppose we boost to a reference frame that is
moving at velocity v1 with respect to the particle. The
particle remains untouched, so its matter wave cannot
have changed. However, due to relativistic time-dilation,
the apparent frequency of oscillation of the standing wave
will be reduced to

ω′0 =
ω0

γ1

If we were to measure the frequency of the wave from
this frame by counting the number of crests that pass by
per second, we would not get ω′0. The reason is that the
wave crests will be passing by at a higher rate due to
our motion relative to the standing wave. Essentially we

are traveling through the wave form as it is oscillating in
place. The actual frequency of the wave in our new refer-
ence frame is still given by the Planck-Einstein equation.
Thus, the relation between the frequency of the wave, ω1,
and the apparent frequency of its internal oscillation, ω′0,
is

ω1 =
γ1mc

2

h̄
= γ1ω0 = γ2

1ω
′
0

Now consider the value of the wave at the center of the
light quantum, ψ0(t), still observing from our moving
frame. As implied by the definition of ω′0, the value will
oscillate sinusoidally according to

ψ0(t) = A sin(ω′0t)

provided a suitable choice for the zero point of time.
Even though the wave has to be confined to a finite

region, the closer we zoom in on the center, the more
it will look like an infinite monochromatic plane wave,
since we are assuming a light quantum with a definite
frequency. The frequency of this monochromatic wave
is what we measure by counting passing crests, namely
ω1. Therefore, we can approximate the value of the wave
near the center of the quantum as

ψ(x, t) = A sin(ω1t− kx)

with coordinates chosen such that the center of the quan-
tum passes x = 0 at time t = 0, and k being an unde-
termined wave vector. The value at the center of the
particle, ψ0(t), can be evaluated from this expression by
plugging in the distance that we have traveled from the
center at time t i.e. x = v1t.

ψ0(t) = ψ(v1t, t) = A sin(ω1t− kv1t)

Equating the two expressions for ψ0(t) gives

A sin(ω′0t) = A sin(ω1t− kv1t)

For this to be true, the parameters of the sine functions
must be equal.

ω′0 = ω1 − kv1

(
1− v2

1

c2

)
ω1 = ω1 − kv1

(
v2

1

c2

)
ω1 = kv1

ω1

k
=
c2

v1
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This tells us the phase velocity u = ω/k of the matter
wave for any velocity, which automatically gives us the
wavelength since u = λν.

λ =
u

ν
=

h

γmc2
ω

k
=

h

γmc2
c2

v
=

h

γmv
=
h

p

Strictly speaking, this derivation only applied to light
quanta because there was no scientific evidence at the
time to suggest that other types of particles obeyed the
Planck-Einstein equation. So when de Broglie concluded
the derivation with the statement,

“We are then inclined to admit that any mov-
ing body may be accompanied by a wave and
that it is impossible to disjoin motion of body
and propagation of wave” [6]

he was taking a radial step.

THE SCHRÖDINGER EQUATION

De Broglie summarized his work in his doctoral thesis.
It is said that his thesis examiners were unsure about
giving it their blessing, so they sent it to Einstein for his
opinion. [7] Einstein endorsed it, which got de Broglie
his PhD, and also led Einstein to promote de Broglie’s
idea. Erwin Schrödinger, who had already been working
on the quantum theory of electrons in 1922 [8], was ex-
posed to deBroglie’s ideas through Einstein. [9] In 1926,
Schrödinger published a paper that introduced his fa-
mous equation governing the behavior of particle wave
functions. The introduction began,

“The theory which is reported in the following
pages is based on the very interesting and fun-
damental researches of L. de Broglie on what
he called ”phase waves” and thought to be as-
sociated with the motion of material points,
especially with the motion of an electron or
proton. The point of view taken here... is
rather that material points consist of, or are
nothing but, wave-systems.” [10]

In taking this leap to a fully wave-based view of matter,
Schrödinger was compelled by the similarity between Fer-
mat’s principle, pertaining to wave paths, and Hamilton’s
principle, pertaining to particle paths. With this rela-
tionship in mind, Schrödinger considered the inadequacy
of classical physics to explain atomic emission spectra
and asked,

“...is one not greatly tempted to investigate
whether the non-applicability of ordinary me-
chanics to micro-mechanical problems is per-
haps of exactly the same kind as the non-
applicability of geometrical optics to the phe-
nonema of diffraction or interference and may,

perhaps, be overcome in an exactly similar
way?”

“As stated above, the wave-phenomena must
in this case be studied in detail. This can
only be done by using an “equation of wave
propagation.” Which one is this to be? In
the case of a single material point, moving in
an external field of force, the simplest way is
to try to use the ordinary wave equation...”
[10]

The wave equation, already well-known from electromag-
netism, is

∂2ψ

∂t2
= u2∇2ψ

where ψ is the wave function and u is the phase veloc-
ity of the wave. The phase velocity is exactly what de
Broglie calculated, so we just need to use de Broglie’s re-
sults to plug in for u (though Schrödinger actually used
a different method to obtain the phase velocity that was
based on the analogy between Hamilton’s principle and
Fermat’s principle). The only catch is that we can’t just
plug in the result u = c2/v because v is an unknown vari-
able. Since we only have one equation, we can only allow
one unknown, which is ψ; otherwise the equation won’t
be solvable. The solution is to express the phase velocity
in terms of the total energy of the particle and the ex-
ternal potential, since the total energy is a constant and
the external potential is known by assumption.

Initially, Schrödinger used the correct relativistic en-
ergy and found the relativistic wave equation. However,
the predictions that came out of the relativistic wave
equation contradicted the experimental data on the fine
structure lines of the Hydrogen spectrum. The reason
was that the equation neglected the spin of the electron,
which he correctly suspected, but he did not know how
to fix the problem. [11] So instead he swept the issue
under the rug by taking the non-relativistic approxima-
tion, which chops off the fine structure term. This places
the focus on the gross structure predictions, which did
match well with experiment. The consequence is that
Schrödinger’s famous equation is only an approximation,
not a true law of physics.

In the non-relativistic approximation, the total energy
can be split into the kinetic (K) and potential (V ) com-
ponents as follows.

E = K + V =
p2

2m
+ V

p2

2m
= E − V

p =
√

2m(E − V )
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Using this expression and de Broglie’s result λ = h/p
gives

u = λν =
h

p

E

h
=

E√
2m(E − V )

Notice we have assumed that the energy in the Planck-
Einstein equation is the total energy, even though we
have not ruled out the possibility that it should be the
kinetic energy since the kinetic energy and total energy of
photons are equal. Schrödinger used a different method
to obtain u, based on the analogy between Hamilton’s
principle and Fermat’s principle that had inspired de
Broglie. For more on this issue, see Appendix 1. Plug-
ging this u into the wave equation,

∂2ψ

∂t2
=

E2

2m(E − V )
∇2ψ

Now we restrict the possible solutions to those with fre-
quency ν = E/h by declaring the time-dependence of ψ
so that

ψ(x, t) = ψ(x, 0)e±iωt = ψ(x, 0)e±iEt/h̄

Note that here Schrödinger introduces complex num-
bers without justification or comment. This was per-
haps a seemingly harmless assumption because electro-
magnetic theory taught physicists that waves are more
conveniently written in complex notation. The first two
time derivatives of ψ are

∂ψ

∂t
= ± iE

h̄
ψ(x, 0)e±iEt/h̄ = ± iE

h̄
ψ(x, t)

∂2ψ

∂t2
= −E

2

h̄2 ψ(x, 0)e±iEt/h̄ = −E
2

h̄2 ψ(x, t)

With this we can eliminate the second time derivative

−E
2

h̄2 ψ =
E2

2m(E − V )
∇2ψ

(E − V )ψ = − h̄2

2m
∇2ψ

Eψ = − h̄2

2m
∇2ψ + V ψ

This is known as the time-independent Schrödinger equa-
tion. To get the time-dependent Schrödinger equation we
just substitute the first time-derivative back in

±ih̄∂ψ
∂t

= − h̄2

2m
∇2ψ + V ψ

The sign ambiguity, as Schrödinger points out, is not
a problem; ψ obeys the equation for one sign and its

complex conjugate obeys the equation with the other
sign. Despite the fact that this equation is only a non-
relativistic approximation, Schrödinger was able to use
it to derive the energy levels of the Bohr atom, which
provided convincing evidence for the wave interpretation
of electrons. Some mark this as the birth of wave me-
chanics.

THE SCHRÖDINGER CONTINUITY EQUATION

Shortly after publication of his famous wave equation,
Schrödinger added another important piece to the puz-
zle that would aid in establishing an interpretation of
the wave function. [12] His discovery was that the wave
function could be fit into the continuity equation familiar
from electromagnetism,

∂ρ

∂t
= −∇ · j

with the proper definitions of ρ and j in terms of ψ. The
Schrödinger continuity equation can be derived directly
from the Schrödinger equation. Multiplying the whole
equation by −i/h̄,

∂ψ

∂t
=

ih̄

2m
∇2ψ − i

h̄
V ψ

The complex conjugate of this is,

∂ψ∗

∂t
= − ih̄

2m
∇2ψ∗ +

i

h̄
V ψ∗

Therefore, the quantity ψ∗ ∂ψ∂t + ψ ∂ψ
∗

∂t is

ψ∗
∂ψ

∂t
+ ψ

∂ψ∗

∂t
=

ih̄

2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
Equivalently,

∂

∂t
(ψ∗ψ) =

ih̄

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗)

This has the form of the continuity equation, where

ρ = |ψ|2

j = − ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗)

Naturally, Schrödinger was led to interpret ρ and j as
the electric charge and current densities for the particle
being modeled. For the case of an electron he suggested,

“...the charge of the electron is not concen-
trated in a point, but is spread out through
the whole space, proportional to the quantity
ψψ̄.” [10]
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THE BORN RULE

By comparing the theoretical predictions of the wave
equation to the experimental data on Hydrogen’s spec-
trum, Schrödinger was able to further justify his hypothe-
sis about the interpretation of the wave function ψ. How-
ever, by the end of the year this interpretation of the wave
function would be overturned by Max Born. [13] Back in
1925, a year before Schrödinger published his wave equa-
tion, one of Born’s assistants named Werner Heisenberg
had introduced a statistical form of quantum theory that
would come to be known as matrix mechanics. Heisen-
berg’s theory was motivated by the problem of accurately
predicting atomic emission spectra, which are determined
by atomic state transitions. In 1916, Einstein had es-
tablished the idea of assigning transition probabilities to
each atomic state transition. As a result of these origins,
Heisenberg’s theory was inherently probabilistic. Born
revised Heisenberg’s theory, including reformulating it in
terms of matrices. Therefore, Born had a predisposition
against Schrödinger’s non-probabilistic interpretation of
the wave function.

“To us in Göttingen [Schrödinger’s] interpre-
tation seemed unacceptable in face of well es-
tablished experimental facts... I had there-
fore, as early as the end of 1925, made an at-
tempt to extend the matrix method... Again
an idea of Einstein’s gave me the lead. He
had tried to make the duality of particles -
light quanta or photons - and waves com-
prehensible by interpreting the square of the
optical wave amplitudes as probability den-
sity for the occurrence of photons. This con-
cept could at once be carried over to the ψ-
function: |ψ|2 ought to represent the prob-
ability density for electrons (or other parti-
cles).” [14]

Born chose to consider an atomic scattering problem in
which a swarm of electrons collide with a heavy atom. He
solved Schrödinger’s equation for this problem and made
the following observations about the wave function.

“The square of the amplitude of this wave
at a great distance from the scattering centre
determines the relative probability of scatter-
ing as a function of direction. Moreover, if the
scattering atom itself is capable of existing in
different stationary states, then Schrödinger’s
wave equation gives automatically the prob-
ability of excitation of these states...” [14]

These observations led Born to a probabilistic interpre-
tation of the wave function, in which |ψ|2 represents the
probability density for the particle’s position. The gen-
eral form of this probabilistic interpretation of the wave

function is known as the Born rule. Einstein, De Broglie,
and Schrödinger all disliked this interpretation. [14] One
reason was that it seemed counter-intuitive that the uni-
verse would operate randomly with no underlaying de-
terministic behavior since ordinarily randomness emerges
from outcome counting of deterministic processes, reduc-
ing randomness to an illusion of ignorance. Another issue
was that the probabilistic interpretation created a para-
doxical wave-particle duality in which quantized particles
still exist, but mysteriously act like waves in unspecified
circumstances. The wave-particle duality issue can be
nearly resolved by assuming that there are no particles;
just waves obeying the stipulation that interactions are
quantized. In perhaps the most famous book on optics
ever written, Max Born and Emil Wolf corroborate this
view for the case of light.

“Light propagates as if it were an an elec-
tromagnetic wave, but interacts with matter
as if its energy were concentrated in photons,
each with an energy quantum.” [15]

If we extend this view to apply to all species of “parti-
cles”, the wave-particle duality ceases to be so paradox-
ical. However, the mechanism of quantization and prob-
abilistic behavior in interactions still remains an open
question.

THE KLEIN-GORDON EQUATION

When de Broglie read Schrödinger’s first publication
on the wave equation, he immediately objected to the
non-relativistic approximation that Schrödinger had em-
ployed. [16] De Broglie’s concept of matter waves had
been heavily based on the relativistic phenomenon of
time dilation, so he could not be satisfied with a non-
relativistic theory. Schrödinger had already worked out
the relativistic wave equation in December 1925, and it is
believed that he was the first to do so, but as discussed
earlier, he didn’t publish it. Many others also saw the
need for a relativistic equation, and during 1926 several
researchers independently reached the same result. The
first to publish was Oskar Klein in April 1926, where the
equation played a subordinate role in his five-dimensional
theory of gravitation and electromagnetism that would
later develop into Kaluza-Klein theory. Walter Gordon
independently arrived at the equation a few months later
in a paper addressing Compton scattering. Despite nu-
merous other discoverers, the equation eventually came
to be known as the Klein-Gordon equation. [16]

The Klein-Gordon equation can be obtained in the
same manner as the Schrödinger equation; we simply in-
sert the proper relativistic expressions for energy and mo-
mentum. Again we start by expressing the momentum in
terms of the total energy and potential. In order In order
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to do that, we need to eliminate β using the relativistic
energy expression.

E = γmc2 + V

E − V =
mc2√
1− β2

1− β2 =
m2c4

(E − V )2

β2 = 1− m2c4

(E − V )2

p2 = γ2m2β2c2 = β2 m
2c2

1− β2

=

(
1− m2c4

(E − V )2

)(
(E − V )2

c2

)
=

1

c2
(
(E − V )2 −m2c4

)
Now that we have the momentum expressed in terms of
E and V , we can easily get the phase velocity in terms
of the same parameters.

u2 = λ2ν2 =
h2

p2

E2

h2
=

c2E2

(E − V )2 −m2c4

Finally, we can insert the phase velocity into the wave
equation.

∂2ψ

∂t2
=

c2E2

(E − V )2 −m2c4
∇2ψ

(
(E − V )2 −m2c4

) ∂2ψ

∂t2
= c2E2∇2ψ

Now since the time-dependence of ψ is of the form e±iωt,

we can substitute ∂2ψ
∂t2 = −E

2

h̄2 ψ(x, t).

−
(
(E − V )2 −m2c4

) E2

h̄2 ψ = c2E2∇2ψ

Canceling the factor E2 and rearranging,

(E − V )2ψ = −h̄2c2∇2ψ +m2c4ψ

If the potential is time-independent, we can write

E2ψ − 2EV ψ + V 2ψ = −h̄2c2∇2ψ +m2c4ψ

Inserting time derivatives to eliminate E yields the
time-dependent Klein-Gordon equation for the time-
independent potential V .

−h̄2 ∂
2ψ

∂t2
− 2ih̄V

∂ψ

∂t
+ V 2ψ = −h̄2c2∇2ψ +m2c4ψ

There are three fundamental problems with this equa-
tion as it currently stands. The first, as we have already
mentioned, is that it does not account for spin. Since all
fundamental particles discovered to date have non-zero
spin, this equation can only be experimentally tested on
spineless composite composite particles like the spinless
pion. Such experiments have validated the Klein-Gordon
equation. [17] However this doesn’t necessarily mean the
Klein-Gordon is inapplicable to free fundamental parti-
cles since spin might only be relevant during interactions.

The other two problems are that the Klein-Gordon
equation seems to permit (1) negative probability den-
sities and (2) negative energies. We will encounter these
two problems in the upcoming sections.

THE KLEIN-GORDON CONTINUITY
EQUATION

A continuity equation can be found for the Klein-
Gordon equation by following a procedure similar to that
used to get the Schrödinger continuity equation. Divid-
ing the Klein-Gordon equation by −h̄2 and rearranging,

∂2ψ

∂t2
= −2i

h̄
V
∂ψ

∂t
+
V 2

h̄2 ψ + c2∇2ψ − m2c4

h̄2 ψ

The complex conjugate is

∂2ψ∗

∂t2
=

2i

h̄
V
∂ψ∗

∂t
+
V 2

h̄2 ψ
∗ + c2∇2ψ∗ − m2c4

h̄2 ψ∗

So the quantity ψ∗ ∂
2ψ
∂t2 − ψ

∂2ψ∗

∂t2 is

ψ∗
∂2ψ

∂t2
− ψ∂

2ψ∗

∂t2

= −2i

h̄
V

(
ψ∗
∂ψ

∂t
+ ψ

∂ψ∗

∂t

)
+ c2

(
ψ∗∇2ψ − ψ∇2ψ∗

)

∂

∂t

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t
+

2i

h̄
V ψ∗ψ

)
= c2∇·(ψ∗∇ψ − ψ∇ψ∗)

To make the units consistent with the Schrödinger con-
tinuity equation, we multiply this equation by ih̄/2mc2.

ih̄

2mc2
∂

∂t

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t
+

2i

h̄
V ψ∗ψ

)

=
ih̄

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗)

This has the form of the continuity equation,

∂ρ0

∂t
= −∇ · j0
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with

ρ0 =
ih̄

2mc2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
− i

mc2
V ψ∗ψ

j0 = − ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗)

It is clear that if ψ and ψ∗ are unconstrained, they can
be chosen such that ρ can be either positive or negative.
Since ρ is interpreted as a probability density for the
particle, this means that negative probability densities
are permitted. This is the second problem with the Klein-
Gordon equation.

THE KLEIN-GORDON DISPERSION RELATION

A dispersion relation gives the relationship between
frequency and wavelength for waves in a particular
medium. For some media, the phase velocity of waves
is constant and the dispersion relation can be written as
u = λν since u is a constant. Such media are called
non-dispersive. Dispersive media, on the other hand,
produce waves with a phase velocity that varies with
the frequency. It is only in dispersive media that waves
can propagate in packets that travel at varying speeds.
This is because the speed of wave packets is measured
by the group velocity vg = ∂ω

∂k , which is constant if the
phase velocity is constant. So we know that matter waves
must propagate in a dispersive medium since we observe
particles traveling at different velocities. Therefore, we
will derive the dispersion relation for the Klein-Gordon
equation to gain insight into the characteristics of the
medium. All we need to start is the phase velocity. Since
u = ω/k, if we eliminate all variables besides ω and k,
the result will be a dispersion relation. Using deBroglie’s
phase velocity u = c2/v = c/β,

ω

k
=
c

β

h̄2ω2 = h̄2k2 c
2

β2
= p2 c

2

β2
= γ2m2c4

h̄2ω2(1− β2) = m2c4

h̄2ω2 = h̄2ω2β2 +m2c4

Using the phase velocity equation once more, we obtain
the dispersion relation.

h̄2ω2 = h̄2k2c2 +m2c4

From this equation, we can see that negative values of
ω are permitted. This means that the energy E = h̄ω
can also be negative, which is the third problem with the
Klein-Gordon equation.

REAL WAVE FUNCTIONS

Historically, the three problems with the Klein-Gordon
equation were resolved by Paul Dirac’s introduction of
the Dirac equation, which incorporated spin and elimi-
nated negative probability densities by reducing the sec-
ond order time derivative to a system of equations with
one time derivative each. Negative energy solutions were
interpreted as corresponding to antiparticles, resolving
the third problem. Rather than going down the path
of Dirac, which increases the level of mathematical ab-
straction with matrix-valued complex wave functions, we
will investigate the possibility of decreasing abstraction
by analyzing the Klein-Gordon equation with real wave
functions.

A propagating sinusoidal wave cannot be completely
characterized by a single real amplitude function. Even
if the amplitude is given at every point in space at a
specific time, there is still no way to tell which direction
it is propagating because sinusoidal functions are sym-
metrical. In fact, we need two real functions to fully de-
scribe propagating sinusoidal waves. One function gives
the amplitude at every point, and the other corresponds
(proportionally) to the amplitudinal momentum at every
point. Let these functions be called U and V respectively.
The amplitudinal momentum must be proportional to
the time derivative of the amplitude, so we can define V
by

∂U

∂t
= V

which requires

∂V

∂t
= c2∇2U − m2c4

h̄2 U

in order that U obeys the Klein-Gordon equation, which
can be obtained directly by eliminating V through substi-
tution. Taking the time derivative of the second equation
shows that V also satisfies the Klein-Gordon equation.
Since both real fields obey the same equation, they can
be combined into a complex field that obeys the same
equation, the real part proportional to U and the imagi-
nary part proportional to V . We will see soon that this
reproduces the textbook complex Klein-Gordon interpre-
tation. There is a discussion on real wave functions in ref-
erence [18]. We have omitted the external potential and
will continue to do so while discussing real wave func-
tions.

THE CANONICAL CONTINUITY EQUATION
FOR REAL WAVE FUNCTIONS

To derive the canonical continuity equation for real
wave functions obeying the Klein-Gordon equation, we
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follow the standard prescription, but use V in place of
the usual complex conjugate.

V
∂2U

∂t2
= c2V∇2U − m2c4

h̄2 V U

U
∂2V

∂t2
= c2U∇2V − m2c4

h̄2 UV

Subtracting the second from the first,

V
∂2U

∂t2
− U ∂

2V

∂t2
= c2V∇2U − c2U∇2V

∂

∂t

(
V
∂U

∂t
− U ∂V

∂t

)
= c2∇ · (V∇U − U∇V )

We multiply both sides by h̄2/2mc2 to give this quantity
units of energy.

1

2

h̄2

mc2
∂

∂t

(
V
∂U

∂t
− U ∂V

∂t

)
=

1

2

h̄2

m
∇ · (V∇U − U∇V )

This is the continuity equation, having the form

∂ρ1

∂t
= −∇ · j1

where

ρ1 =
1

2

h̄2

mc2

(
V
∂U

∂t
− U ∂V

∂t

)

j1 =
1

2

h̄2

m
(U∇V − V∇U)

THE RELATION BETWEEN REAL AND
COMPLEX WAVE FUNCTIONS

As mentioned earlier, a complex wave function with
real part proportional to U and complex part propor-
tional to V will also satisfy the same Klein-Gordon equa-
tion because both components obey the equation inde-
pendently. With the appropriate constants included, the
complex wave function can be written as

ψ =

√
1

2

(
U + i

h̄

mc2
V

)
The question now is whether this ψ corresponds to and
gives the same results as the textbook Klein-Gordon wave
function. It suffices to show that the probability flux
and probability density correspond because these are the
only measurable quantities modeled by the Klein-Gordon

equation. The textbook complex wave function’s proba-
bility flux is

j0 =
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗)

=
h̄

2mi
((ψR − iψI)∇ (ψR + iψI)

− (ψR + iψI)∇ (ψR − iψI))

=
h̄

2mi
(ψR∇ψR + iψR∇ψI − iψI∇ψR + ψI∇ψI

− (ψR∇ψR − iψR∇ψI + iψI∇ψR + ψI∇ψI))

=
h̄

2mi
(2iψR∇ψI − 2iψI∇ψR)

=
h̄

m

(
h̄

2mc2
U∇V − h̄

2mc2
V∇U

)
=

1

2

h̄2

m2c2
(U∇V − V∇U)

which is exactly equal to j1/mc
2 for real wave functions.

The textbook complex wave function’s probability den-
sity is

ρ0 =
ih̄

2mc2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
=

ih̄

mc2
Im

[
ψ∗
∂ψ

∂t

]
=

ih̄

2mc2
Im

[(
U − i h̄

2mc2
V

)
×
(
∂U

∂t
+ i

h̄

mc2
∂V

∂t

)]
=

1

2

h̄2

m2c4

(
V
∂U

∂t
− U ∂V

∂t

)

which is exactly equal to ρ1/mc
2 for real wave functions.

Since both the probability flux and probability density
correspond with just a constant of proportionality, we
see that there is a simple relationship between the two
formalisms. The factor of mc2 is only present because ρ0

is defined as a probability density, whereas ρ1 is defined
as an energy density. So using real wave functions is just
as feasible as using complex wave functions, but we still
have yet to deal with the issue of negative values of ρ.

THE CONSERVED DENSITY

At this point we need to learn more about the con-
served density ρ to figure out why it doesn’t work as a
probability density. We start by expressing it in a differ-
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ent form.

ρ1(x, t) =
1

2

h̄2

mc2

(
V
∂U

∂t
− U ∂V

∂t

)
=

1

2

h̄2

mc2

(
V 2 − U ∂

2U

∂t2

)
=

1

2

h̄2

mc2

(
V 2 − U

(
c2∇2U − m2c4

h̄2 U

))
=

1

2

h̄2

mc2

(
m2c4

h̄2 U2 + V 2 − c2U∇2U

)
=

1

2
mc2U2 +

1

2

h̄2

mc2
V 2 − 1

2

h̄2

m
U∇2U

This expression looks similar to the energy density of a
lattice of coupled simple harmonic oscillators, but the
last term is different. The first term is the local elastic
potential energy of the oscillators at each lattice site. The
second term is the local kinetic energy of the oscillators
at each lattice site. The third term, however, is different
from the usual surface tension caused by the coupling of

the oscillators, which has the form + 1
2
h̄2

m |∇U |
2.

From this expression, we can easily confirm that ρ can
go negative. Since the differential equation is second-
order in time, there will be a solution for all possible
initial conditions of U and V . If we choose V = 0 and
U = |x|2 + ε, then

ρ(0, 0) =
1

2
mc2ε2 − 1

2

h̄2

m
(6ε)

With ε sufficiently small, this expression will be negative.
Even though this is not a physical solution because it
is unbounded, a realistic solution could have the same
values near the origin, so the conclusion is unchanged.

A SECOND CONTINUITY EQUATION FOR
REAL WAVE FUNCTIONS

Define the local energy density ρL to be the sum of
the local kinetic and local elastic potential energy for the
lattice of oscillators mentioned above. So

ρL =
1

2
mc2U2 +

1

2

h̄2

mc2
V 2

Then

∂ρL
∂t

= mc2U
∂U

∂t
+

h̄2

mc2
V
∂V

∂t

= mc2UV +
h̄2

mc2
V

(
c2∇2U − m2c4

h̄2 U

)
=

h̄2

m
V∇2U

=
h̄2

m

(
∇ · (V∇U)−∇V · ∇U

)
=

h̄2

m

(
∇ · (V∇U)− 1

2

∂

∂t
|∇U |2

)

Therefore

∂

∂t

(
ρL +

h̄2

2m
|∇U |2

)
=
h̄2

m
∇ · (V∇U)

This has the form of the continuity equation with

ρ2 =
1

2
mc2U2 +

1

2

h̄2

mc2
V 2 +

1

2

h̄2

m
|∇U |2

j2 = − h̄
2

m
V∇U

So there is a second continuity equation for the Klein-
Gordon equation and for this one ρ clearly is positive
definite. This suggests that the problem with the Klein-
Gordon equation may be in its interpretation rather than
in the equation itself. Therefore, we will abandon all our
assumptions about the interpretation of wave functions
and begin searching for a new conception. Initially, we
see that ρ2 is exactly the energy density of a lattice of
coupled simple harmonic oscillators, which can also be
identified as the Klein-Gordon Hamiltonian density. This
provides the first clue toward a revised interpretation.

STANDING WAVES AND MONOCHROMATIC
PLANE WAVES

In an effort to gain more clues toward the interpreta-
tion of the continuity equations, we will investigate the
simple cases of standing waves and monochromatic plane
waves. For each case, we will calculate ρ and j and then
try to identify the meaning. Let the canonical continuity
equation be denoted with the subscript 1 and the second
continuity equation be denoted with the subscript 2.

First, we test a standing wave of the form

U(x, t) = U0(x) sin(ωt)

which means

V (x, t) =
∂U

∂t
= ωU0(x) cos(ωt)

Therefore,

ρ1 =
1

2

h̄2

mc2
(
ω2U2

0 (x) cos2(ωt) + ω2U2
0 (x) sin2(ωt)

)
=

1

2

h̄2

mc2
ω2U2

0 (x)

j1 =
1

2

h̄2

m
(U∇V − V∇U) = 0
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ρ2 =
1

2
mc2U2

0 (x) sin2(ωt) +
1

2

h̄2

mc2
ω2U2

0 (x) cos2(ωt)

+
1

2

h̄2

m
|∇U0(x)|2 sin2(ωt)

ρ2 =
1

2
mc2U2

0 (x) sin2(ωt)

+
1

2

1

mc2
(h̄2k2c2 +m2c4)U2

0 (x) cos2(ωt)

+
1

2

h̄2

m
|∇U0(x)|2 sin2(ωt)

ρ2 =
1

2
mc2U2

0 (x) +
1

2

h̄2k2

m
U2

0 (x) cos2(ωt)

+
1

2

h̄2

m
|∇U0(x)|2 sin2(ωt)

j2 = − h̄
2

m
ωU0(x) cos(ωt) sin(ωt)∇U0(x)

So for standing waves, the first continuity equation indi-
cates no flux and a constant density, whereas the second
gives a variable density and flux.

We now test a monochromatic plane wave of the form

U(x, t) = A sin(k · x− ω(k)t)

which means

V (x, t) =
∂U

∂t
= −ω(k)A cos(k · x− ω(k)t)

Therefore,

ρ1 =
1

2

h̄2

mc2
ω2(k)A2

×
(
cos2(k · x− ω(k)t) + sin2(k · x− ω(k)t)

)
ρ1 =

A2

2

h̄2

mc2
ω2(k)

j1 =
1

2

h̄2

m
kω(k)A2

×
(
sin2(k · x− ω(k)t) + cos2(k · x− ω(k)t)

)
j1 =

A2

2

h̄2

m
kω(k)

ρ2 =
1

2
mc2A2 sin2(k · x− ω(k)t)

+
1

2

h̄2

mc2
ω2(k)A2 cos2(k · x− ω(k)t)

+
1

2

h̄2

m
k2A2 cos2(k · x− ω(k)t)

ρ2 =
1

2
mc2A2 sin2(k · x− ω(k)t)

+
1

2

1

mc2
(h̄2k2c2 +m2c4)A2 cos2(k · x− ω(k)t)

+
1

2

h̄2

m
k2A2 cos2(k · x− ω(k)t)

ρ2 =
1

2
mc2A2 +

h̄2

m
k2A2 cos2(k · x− ω(k)t)

j2 =
h̄2

m
kω(k)A2 cos2(k · x− ω(k)t)

Again, the first continuity equation gives a constant den-
sity and flux whereas the second gives a variable density
and flux.

Now if we compute the quantity j1/ρ1 for monochro-
matic plane waves we find the simple expression

j1
ρ1

=
A2

2
h̄2

m kω(k)
1
2
h̄2

mc2ω
2(k)A2

=
kc2

ω(k)

In the next section we will show that this is the expression
for the group velocity of a wave packet with wave vector
peaked around k.

THE REAL KLEIN-GORDON GROUP
VELOCITY

Before calculating the expression for the group velocity
of a wave packet, we first confirm that the dispersion
relation for the real Klein-Gordon equation is the same as
that of the complex Klein-Gordon equation by inserting
a test function. Let U = A sin(k · x − ω(k)t). Plugging
this into the Klein-Gordon equation,

∂2U

∂t2
= c2∇2U − m2c4

h̄2 U

we obtain,

−ω2(k) A sin(k · x− ω(k)t) =

− k2c2A sin(k · x− ω(k)t)

− m2c4

h̄2 A sin(k · x− ω(k)t)

Canceling like factors,

ω2(k) = k2c2 +
m2c4

h̄2
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ω(k) = ±
√
k2c2 +

m2c4

h̄2

Indeed, this is the same dispersion relation as that of the
complex Klein-Gordon equation.

Now, the group velocity vector is given by

vg(k) = ∇kω(k)

where the subscript indicates that derivatives should be
taken with respect to the parameter k instead of the po-
sition variable. Plugging in the Klein-Gordon dispersion
relation, the x-component is,

(vg)x(k) =
∂

∂kx
ω(k) = ± ∂

∂kx

√
k2
xc

2 + k2
yc

2 + k2
zc

2 +
m2c4

h̄2

= ± kxc
2√

k2
xc

2 + k2
yc

2 + k2
zc

2 + m2c4

h̄2

= ± kxc
2

ω(k)

The other components are similar, so

vg(k) = ± kc2

ω(k)

Therefore, combining this with the result from the last
section, we see that

j1 = ρ1vg(k)

where j1 and ρ1 are the flux and density for a monochro-
matic plane wave with wave vector k. This is some-
what reminiscent of the classical definition of momen-
tum, p = mv, if we consider ρ1 to be the energy density
and g = j1/c

2 to be the momentum density. However,
we already saw that ρ1 can go negative and that ρ2 rep-
resents the actual energy density. In the next section we
will examine the relationship between ρ1 and ρ2 further.

INTEGRATING OVER A WAVE PACKET

If we compute the densities over a complete wave
packet, bounded by a surface where U = 0, we find∫

V

ρ1 d
3x =

∫
V

(
ρL −

1

2

h̄2

m
U∇2U

)
d3x

=

∫
V

(
ρL −

1

2

h̄2

m

(
∇ · (U∇U)− |∇U |2

))
d3x

By the divergence theorem,

=

∫
V

(
ρL +

1

2

h̄2

m
|∇U |2

)
d3x− 1

2

h̄2

m

∮
∂V

U∇U d2x

The surface integral goes to zero when integrating over a
region bounded by a surface where U = 0 so∫

V

ρ1 d
3x =

∫
V

ρ2 d
3x

This means that in the classical limit, where quanta
look like point particles, ρ1 and ρ2 are indistinguishable.
Given that this is the case, the connection between j1 and
classical momentum mentioned in the last section makes
more sense because ρ1 does represent the energy from a
classical perspective.

A REVISED INTERPRETATION OF THE WAVE
FUNCTION

So for we have found that

1. ρ2 represents a non-negative energy density.

2. ρ1 and ρ2 are indistinguishable in the classical limit.

3. j1 = 0 for a set of solutions with zero momentum,
whereas j2 6= 0.

4. j1 is constant for a set of solutions with constant
translational motion, whereas j2 is not.

5. j1 satisfies an equation that is analagous to the clas-
sical definition of momentum for monochromatic
plane wave solutions.

Based on this evidence, we propose that ρ2 is the energy
density, ρ2/mc

2 is the probability density, and g = j1/c
2

is the momentum density. So the first continuity equa-
tion can be thought of as the momentum continuity equa-
tion and the second as the energy/probability continuity
equation.

This is consistent with the use of the momentum op-
erator in standard quantum mechanics. Recalling that
j1 is proportional to the complex form according to
j1 = mc2j0,

g =
j1
c2

= mj0 = − ih̄
2

(ψ∗∇ψ − ψ∇ψ∗)

The net momentum in the volume V is then

pnet =

∫
V

g d3x = Re

[∫
V

ψ∗(−ih̄∇)ψ d3x

]
This illustrates the origin of the momentum operator in
quantum mechanics, p̂ = −ih̄∇.

It may seem surprising that the energy density and
momentum density do not appear in the same continuity
equation since they do classically. But this is just a result
of the fact that for waves, momentum density does not
flow with energy density the same way it does for parti-
cles. When a particle is moving, the relativistic equations
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E = γmc2 and p = γmv imply that p = Ev/c2. If we
divide by a unit of volume to get a density equation, it
would be gp(x) = ρp(x)v/c2. So for a point particle,
the momentum density distribution has the same shape
as the energy density distribution. This is not true for
waves; a monochromatic plane wave has uniform momen-
tum density and variable energy density if we calculate
energy using the model of a lattice of coupled oscillators.
So on the quantum level, energy and momentum do not
fit into a simple continuity equation. The mistake in the
old interpretation was thinking that they did.

MAGNITUDE SQUARED OF THE WAVE
FUNCTION

At this point we have a simple answer to the once mys-
terious question: why is the probability density equal to
|ψ|2? The answer is: it isn’t, |ψ|2 just happens to be
equal to the non-relativistic approximation of the prob-
ability density, which makes it appear correct in such
non-relativistic treatments as the Schrödinger equation.
We can show that this is true for wave packets by apply-
ing the approximation v � c to the probability density.
By definition, wave packets are constructed from a super-
position of waves with nearly identical wavelengths. So
if the central wavelength corresponds to the wave vector
k0, then all of the component waves will have wave vec-
tor approximately equal to k0. We can express such a
wane packet as

U(x, t) =

∫
a(k)Uk(x, t) d3k

where a(k) is a narrowly peaked function and Uk(x, t)
is a sinusoidal wave with wave vector k. Therefore, U
obeys the equation

∂2U

∂t2
(x, t) =

∫
a(k)

∂2

∂t2
Uk(x, t) d3k

= −
∫
a(k)ω2(k)Uk(x, t) d3k

But since all the component wave vectors are nearly iden-
tical to k0, all the ω(k) are nearly identical to ω(k0).

∂2U

∂t2
(x, t) ' −ω2(k0)

∫
a(k)Uk(x, t) d3k

∂2U

∂t2
(x, t) ' −ω2(k0)U(x, t)

Now we can apply the non-relativistic approximation
to the dispersion relation to get an appropriate expression
for ω. In the non-relativistic approximation, v � c so
γ ' 1. Therefore

γmv � mc

pc� mc2

p2c2 � m2c4

h̄2k2c2 � m2c4

This implies that the momentum term in the dispersion
relation is negligible. Canceling it gives

h̄2ω2 ' m2c4

Plugging this ω into the equation above shows that non-
relativistic wave packets obey the approximate equation

∂2U

∂t2
(x, t) ' −m

2c4

h̄2 U(x, t)

Using this approximation, we can evaluate ρ1.

ρ1 =
1

2

h̄2

mc2

(
V
∂U

∂t
− U ∂V

∂t

)

ρ1 =
1

2

h̄2

mc2

(
V 2 − U ∂

2U

∂t2

)

ρ1 '
1

2

h̄2

mc2

(
V 2 +

m2c4

h̄2 U2

)

ρ1 '
1

2
mc2U2 +

1

2

h̄2

mc2
V 2

This is just the local energy density ρL. We can see that

the − 1
2
h̄2

mU∇
2U term dropped out because it is of order

− 1
2
h̄2

m k
2U2 which is negligible compared with the first

term in ρL. But the last term in ρ2 also has two spatial
derivatives and is hence also negligible. Therefore, non-
relativistic wave packets satisfy

ρ2 ' ρ1 ' ρL

Now if we solve for |ψ|2 in terms of U and V using the
relation

ψ =

√
1

2

(
U + i

h̄

mc2
V

)
we find

|ψ|2 =
1

2
U2 +

1

2

h̄2

m2c4
V 2

Therefore, for non-relativistic wave packets

|ψ|2 ' ρ2

mc2

where the right hand side is the predicted probability
density. This explains why the magnitude squared of the
wave function works for the non-relativistic Schrödinger
equation.
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APPENDIX 1: WHY IS THE FREQUENCY
PROPORTIONAL TO TOTAL ENERGY?

Why is hν equal to the total energy instead of the ki-
netic energy? Consider photons since we have good data
on their frequency. The only force they feel is gravity so
we use gravitational red shift as our inspiration. Grav-
itational red shift does not affect the signal itself; it is
an observational effect caused by different clock rates at
different gravitational potentials. If clocks actually run
slower in time-dilation situations, as ether theory sug-
gests, then the frequency never changes. So both total
energy and frequency are conserved, thus preserving the
relation E = hν where E is the total energy.
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