Calculus of Units

Chris Clark December 31, 2009

Definition 1. [x] represents the units of the expression x.

Axiom 1. [xy] = [x][y] because units are always multiplicative.

Axiom 2. [1/x] = 1/[x] because units are inverted when an expression is inverted.

Axiom 3. $[x \pm y] = [x]$ if [x] = [y], and $[x \pm y]$ is undefined if $[x] \neq [y]$ because units are additive if they are the same, but it is not possible to add different units.

Axiom 4. We will assume that the units of a function do not depend on the magnitude of the parameter, though they can depend on the units of the parameter.

Theorem 5. $[\lim_{x\to a} f(x)] = [f(x)]$

Proof. The left side is the units of the f evaluated at some value and the right side is the units of the f evaluated at an arbitrary value, but by Axiom 4, these units must be the same.

Theorem 6. $\left[\frac{df(x)}{dx}\right] = \frac{[f(x)]}{[x]}$ *Proof.* $\left[\frac{df(x)}{dx}\right] = \left[\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\right] = \left[\frac{f(x+h) - f(x)}{h}\right]$ $= \left[f(x+h) - f(x)\right]/[h] = \left[f(x)\right]/[h] = \left[f(x)\right]/[x]$ since we must assign h the same units as x in order for the quantity x + h to make any sense.

Theorem 7. $[\sum_{n} f(n)] = [f(n)]$

Proof. This follows immediately from repeated application of Axiom 3 along with the fact that [f(n)] = [f(n+1)] by Axiom 4.

Theorem 8. $[\int_{a}^{b} f(x)dx] = [f(x)][x]$

$$\begin{aligned} Proof. \ \left[\int_{a}^{b} f(x) dx \right] &= \left[\lim_{dx \to 0} \sum_{n=0}^{floor((b-a)/dx)} f(a+n*dx) dx \right] \\ &= \left[\sum_{n=0}^{floor((b-a)/dx)} f(a+n*dx) dx \right] \\ &= \left[f(a+n*dx) dx \right] = \left[f(a+n*dx) \right] [dx] = \left[f(x) \right] [x] \text{ since } [x] = [dx]. \end{aligned}$$

Theorem 9. $[\delta(x)] = 1/[x]$

$$\begin{array}{l} Proof. \ [\int_{-\infty}^{\infty} f(x)\delta(x)dx] = [f(0)] \Rightarrow [f(x)\delta(x)][x] = [f(0)] \\ \Rightarrow [f(x)][\delta(x)][x] = [f(0)] \Rightarrow [\delta(x)][x] = 1 \Rightarrow [\delta(x)] = 1/[x]. \end{array}$$

Theorem 10. $[\delta(g(x))] = 1/[g(x)]$

$$\begin{aligned} Proof. \ \left[\int_{-\infty}^{\infty} f(x) \delta(g(x)) dx \right] &= \left[\left| \frac{dg(x)}{dx} \right|_{f(x)=0}^{-1} \int_{-\infty}^{\infty} f(x) \delta(g(x)) d(g(x)) \right] \\ \Rightarrow \left[f(x) \right] \left[\delta(g(x)) \right] \left[x \right] &= \left[\frac{dg(x)}{dx} \right]^{-1} \left[f(c) \right]_{g(c)=0} \right] \\ \Rightarrow \left[\delta(g(x)) \right] \left[x \right] &= \left[x \right] / \left[g(x) \right] \Rightarrow \left[\delta(g(x)) \right] = 1 / \left[g(x) \right]. \end{aligned}$$