Calculus of Units

Chris Clark December 31, 2009

Definition 1. $[x]$ represents the units of the expression x.
Axiom 1. $[x y]=[x][y]$ because units are always multiplicative.
Axiom 2. $[1 / x]=1 /[x]$ because units are inverted when an expression is inverted.
Axiom 3. $[x \pm y]=[x]$ if $[x]=[y]$, and $[x \pm y]$ is undefined if $[x] \neq[y]$ because units are additive if they are the same, but it is not possible to add different units.

Axiom 4. We will assume that the units of a function do not depend on the magnitude of the parameter, though they can depend on the units of the parameter.

Theorem 5. $\left[\lim _{x \rightarrow a} f(x)\right]=[f(x)]$
Proof. The left side is the units of the f evaluated at some value and the right side is the units of the f evaluated at an arbitrary value, but by Axiom 4, these units must be the same.
Theorem 6. $\left[\frac{d f(x)}{d x}\right]=\frac{[f(x)]}{[x]}$
Proof. $\left[\frac{d f(x)}{d x}\right]=\left[\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]=\left[\frac{f(x+h)-f(x)}{h}\right]$
$=[f(x+h)-f(x)] /[h]=[f(x)] /[h]=[f(x)] /[x]$ since we must assign h the same units as x in order for the quantity $x+h$ to make any sense.

Theorem 7. $\left[\sum_{n} f(n)\right]=[f(n)]$
Proof. This follows immediately from repeated application of Axiom 3 along with the fact that $[f(n)]=$ $[f(n+1)]$ by Axiom 4.
Theorem 8. $\left[\int_{a}^{b} f(x) d x\right]=[f(x)][x]$
Proof. $\left[\int_{a}^{b} f(x) d x\right]=\left[\lim _{d x \rightarrow 0} \sum_{n=0}^{\text {floor }((b-a) / d x)} f(a+n * d x) d x\right]$
$=\left[\sum_{n=0}^{\text {floor }((b-a) / d x)} f(a+n * d x) d x\right]$
$=[f(a+n * d x) d x]=[f(a+n * d x)][d x]=[f(x)][x]$ since $[x]=[d x]$.
Theorem 9. $[\delta(x)]=1 /[x]$
Proof. $\left[\int_{-\infty}^{\infty} f(x) \delta(x) d x\right]=[f(0)] \Rightarrow[f(x) \delta(x)][x]=[f(0)]$
$\Rightarrow[f(x)][\delta(x)][x]=[f(0)] \Rightarrow[\delta(x)][x]=1 \Rightarrow[\delta(x)]=1 /[x]$.
Theorem 10. $[\delta(g(x))]=1 /[g(x)]$
Proof. $\left[\int_{-\infty}^{\infty} f(x) \delta(g(x)) d x\right]=\left[\left|\frac{d g(x)}{d x}\right|_{f(x)=0}^{-1} \int_{-\infty}^{\infty} f(x) \delta(g(x)) d(g(x))\right]$
$\Rightarrow[f(x)][\delta(g(x))][x]=\left[\frac{d g(x)}{d x}\right]^{-1}\left[\left.f(c)\right|_{g(c)=0}\right]$
$\Rightarrow[\delta(g(x))][x]=[x] /[g(x)] \Rightarrow[\delta(g(x))]=1 /[g(x)]$.

