Pythagorean Theorem

Chris Clark

February 25, 2005

Notation: (a, b) will denote the vector with x component a and y component b in the Cartesian plane. $|(a, b)|$ will denote the length of the vector (a, b). $(a, b)+(c, d)$ will denote the vector sum $(a+c, b+d)$.

Theorem 0.1. $|(a, b)|^{2}=a^{2}+b^{2}$
Proof. Let $(a, b)^{\prime}$ denote the vector created by rotating (a, b) by 90° counterclockwise. Then $(1,0)^{\prime}=(0,1)$ and $(0,1)^{\prime}=(-1,0)$. Now $(a, b)^{\prime}=[(a, 0)+$ $(0, b)]^{\prime}=(a, 0)^{\prime}+(0, b)^{\prime}$ since the rotation of a vector sum is the vector sum of the rotated vectors. So $(a, b)^{\prime}=a(1,0)^{\prime}+b(0,1)^{\prime}=a(0,1)+b(-1,0)=$ $(0, a)+(-b, 0)=(-b, a)$.

When calculating a length of a sum of two perpendicular vectors, the vectors can be replaced by any other perpendicular vectors of the same length without affecting the result since length is invariant under rotation. Let $l=|(a, b)|$ and consider the general case $\left|c(a, b)+d(a, b)^{\prime}\right|=\left|c * l(1,0)+d * l(1,0)^{\prime}\right|=$ $l|c(1,0)+d(0,1)|=|(a, b)||(c, d)|$.

Therefore, $|(a, b)|^{2}=|(a, b)||(a,-b)|=\left|a(a, b)+(-b)(a, b)^{\prime}\right|=$ $\left|\left(a^{2}, a b\right)+(-b)(-b, a)\right|=\left|\left(a^{2}, a b\right)+\left(b^{2},-a b\right)\right|=\left|\left(a^{2}+b^{2}, 0\right)\right|=a^{2}+b^{2}$.

