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A derivation of Maxwell’s equations in potential form from Maxwell’s equations in differential
form. At the end, a continuity equation for the electromagnetic potentials is identified and discussed.
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ELECTROMAGNETIC FIELDS IN TERMS OF
POTENTIALS

Starting from Maxwell’s equations in differential form,

∇ ·E =
ρ

ε0

∇×E = −∂B
∂t

∇ ·B = 0

∇×B = µ0J + µ0ε0
∂E

∂t

Maxwell’s equations in potential form can be derived us-
ing Helmholtz’s theorem.

According to Helmholtz’s Theorem, any vector field B
satisfying ∇ ·B = 0 can be written as

B = ∇×A

for some vector field A. Based on Gauss’s Law for mag-
netism (3rd equation), this theorem applies to the mag-
netic field. Plugging this into Faraday’s law (2nd equa-
tion) gives

∇×E = − ∂

∂t
(∇×A) = −∇×

(
∂A

∂t

)

∇×
(
E +

∂A

∂t

)
= 0

Again by Helmholtz’s Theorem, any vector field F satis-
fying ∇× F = 0 can be written as

F = ∇φ

for some scalar field φ. Based on the last result, we can
write

E +
∂A

∂t
= −∇φ

E = −∇φ− ∂A

∂t

Therefore, the electromagnetic fields expressed in terms
of potentials are

B = ∇×A

E = −∇φ− ∂A

∂t

MAXWELL’S EQUATIONS IN POTENTIAL
FORM

Maxwell’ s equations in potential form are obtained by
eliminating E and B from the remaining two Maxwell
equations using the substitutions derived in the previous
section. Gauss’s Law (1st equation) becomes

∇ ·
(
−∇φ− ∂A

∂t

)
=

ρ

ε0

∇2φ+
∂

∂t
(∇ ·A) = − ρ

ε0

Ampere’s Law (4th equation) becomes

∇× (∇×A) = µ0J + µ0ε0
∂

∂t

(
−∇φ− ∂A

∂t

)
Using the relation µ0ε0 = 1/c2 and the vector identity
∇× (∇×A) = ∇(∇ ·A)−∇2A,

∇(∇ ·A)−∇2A = µ0J−
1

c2
∇

(
∂φ

∂t

)
− 1

c2
∂2A

∂t2

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A +

1

c2
∂φ

∂t

)
= −µ0J

So Maxwell’s equations in potential form can be written
in the following form

∇2φ+
∂

∂t
(∇ ·A) = − ρ

ε0

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A +

1

c2
∂φ

∂t

)
= −µ0J

GAUGE FIXING

Both of the equations derived in the previous section
contain the expression ∇·A. The value of this expression
does not affect the electric or magnetic fields, so we can
choose a value arbitrarily. The value of ∇·A is known as
the gauge, and the act of choosing the value is known as
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gauge fixing. There is a particular choice of gauge that
makes the two equations maximally symmetric:

∇ ·A = − 1

c2
∂φ

∂t

which is known as the Lorentz gauge. Using this gauge
condition, Maxwell’s equations in potential form can be
written as

∇2φ− 1

c2
∂2φ

∂t2
= − ρ

ε0

∇2A− 1

c2
∂2A

∂t2
= −µ0J

INTERPRETATION

The choice of gauge is often thought to be physically
meaningless due to the fact that it does not affect the
observables E and B. Philosophically though, it is possi-
ble that the universe operates based on rules that assume
a particular gauge. If so, then we could say philosophi-
cally that this gauge is the “correct” gauge choice, even
though it may be impossible to tell which one it is. But
even if there is no direct experimental test, there may
be theoretical evidence that points toward a particular
gauge over all the others. Perhaps one such piece of evi-
dence is the observation that the Lorentz gauge equation
is a continuity equation, fitting the general form

∂ρ

∂t
= −∇ · j

It is not surprising that φ obeys a continuity equa-
tion. A corollary of the Helmholtz Decomposition The-
orem says that all physically realistic scalar fields obey
a continuity equation. Basically, the theorem states that
for any reasonable scalar field S and vector field C there
exists a vector field F such that∇·F = S and∇×F = C.
So if we choose S = ∂φ

∂t , the theorem implies the exis-

tence of a vector field F satisfying ∇ · F = ∂φ
∂t . Defining

A = −F/c2 gives us a familiar continuity equation: the
Lorentz gauge condition. The interesting point is that
the two potentials appear in a single continuity equation.

Continuity equations contain two variables: a density
and a flux. Typically, the density corresponds to some
physical quantity and the flux corresponds to the flow
of that physical quantity e.g. charge and current. And
in such cases, there is only one underlaying scalar field.
For example, consider the continuity equation for proba-
bility in quantum mechanics, which only depends on the
underlying wave function field; the probability flux den-
sity j is just a formula referring to ψ. This suggests that
the electromagnetic potentials may likewise derive from
a single scalar field.
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