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1 Calculus of Variations

The variation of a function f is

δf [x(t)] = lim
ε→0

f [x(t) + εη(t)]− f [x(t)]
ε

(1)

where η(t) is an arbitrary function subject to the constraint that it vanishes at
the endpoints of the interval under consideration. First we notice that for f
being the identity function we have

δx(t) = lim
ε→0

x(t) + εη(t)− x(t)
ε

= lim
ε→0

εη(t)
ε

= η(t), (2)

so we are able to write δx and η(t) interchangeably. Now, we can always write
the first term in the numerator of (1) as a power series in ε, so

δf [x(t)] = lim
ε→0

f [x(t)] + εη(t)f ′[x(t)] + O(ε2)− f [x(t)]
ε

= f ′[x(t)]δx (3)

This is basically a form of chain rule for variations. We can also derive the
following simple rules:

δ(cf [x(t)]) = cδf [x(t)] (4)

δ(f [x(t)]± g[x(t)]) = δf [x(t)]± δg[x(t)] (5)

δ(f [g[x(t)]]) = f ′[g[x(t)]]δ(g[x(t)]) (6)

δ

(
dx(t)

dt

)
=

d

dt
(δx) (7)
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2 Principle of Least Action

The Lagrangian of a system, written L, is defined to be the difference of the
potential and kinetic energies of that system. It is a functional of the positions
and velocities of the particles in the system. The action of the system in a time
interval (t1, t2) is defined to be the integral of the Lagrangian with respect to
time over the interval. The Principle of Least Action says that the actual
trajectories and velocities of the particles in the real world will make the action
extremal. This principle is equivalent to Newton’s laws of motion, but it will
provide us with new problem solving methods.

Theorem 2.1. (The Principle of Least Action) δ
∫ t2

t1
L dt = 0.

Proof. We will only provide a proof for the special case of one particle in one
dimension, but the general proof is a straightforward elaboration. We start with
Newton’s law F = md2x

dt2 and the definition of potential energy F = −dV
dx :

⇒ −m
d2x

dt2
− dV

dx
= 0

Now let δx = η(t) be an arbitrary function that vanishes at the endpoints of the
interval (t1, t2).1 Integrating any expression that is equal to zero always yields
zero, so:

⇒
∫ t2

t1

(
−m

d2x

dt2
− dV

dx

)
δx dt = 0

⇒
∫ t2

t1

(
−m

d2x

dt2
δx− dV

dx
δx

)
dt = 0

Here we integrate by parts on the first term and use the constraint that δx
vanishes at the endpoints so that the boundary term is zero.

⇒ −m
dx

dt
δx|t2t1 +

∫ t2

t1

(
m

dx

dt

d

dt
(δx)− dV

dx
δx

)
dt = 0

⇒
∫ t2

t1

(
m

dx

dt
δ

(
dx

dt

)
− dV

dx
δx

)
dt = 0

Finally, we use the chain rule of variations backwards to pull the variation
symbol out front.

⇒
∫ t2

t1

(
m

2
δ

((
dx

dt

)2
)
− δV (x)

)
dt = 0

⇒ δ

∫ t2

t1

(m

2
ẋ2 − V (x)

)
dt = 0

⇒ δ

∫ t2

t1

L[x(t), ẋ(t)] dt = 0

1There is no loss of generality with this assumption because this is built into the definition
of variations.
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3 Euler-Lagrange Equation

The Euler-Lagrange Equation is a mathematical result that converts an
equation of the form δ

∫
fdt = 0 into a differential equation in terms of f . This

result can then be directly applied to the principle of least action to yield the
Lagrange equations of motion.

Theorem 3.1. (Euler-Lagrange Equation)

δ

∫
f [x(t), ẋ(t)] dt = 0 ⇒ d

dt

df

dẋ
− df

dx
= 0

Proof.

δ

∫ t2

t1

f [x(t), ẋ(t)] dt = 0

⇒
∫ t2

t1

δf [x(t), ẋ(t)] dt = 0

⇒
∫ t2

t1

(
df

dx
δx +

df

dẋ
δẋ

)
dt = 0

⇒
∫ t2

t1

(
df

dx
δx +

df

dẋ

d

dt
(δx)

)
dt = 0

⇒ df

dẋ
δx|t2t1 +

∫ t2

t1

(
df

dx
δx− d

dt

df

dẋ
δx

)
dt = 0

⇒
∫ t2

t1

(
df

dx
− d

dt

df

dẋ

)
δx dt = 0

Now for this to be true for an arbitrary function δx, the other factor of the
integrand must always be zero.

⇒ d

dt

df

dẋ
− df

dx
= 0

The hypothesis of this theorem is exactly what we have for the action integral,
so we immediately obtain Lagrange’s equation of motion

⇒ d

dt

dL

dẋ
− dL

dx
= 0

Let’s go back and take a look at how we got to this point. To obtain the least
action principle, we basically used the calculus of variations backwards (zero
valued expression → integral with zero variation). Then we took that result
and applied the calculus of variations in the normal forward direction (integral
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with zero variation → zero valued expression). So essentially we are back to
where we started. If we plug the Lagrangian back in,

d

dt

d

dẋ

(m

2
ẋ2
)
− d

dx
(−V ) = 0

⇒ m
d

dt
ẋ +

dV

dx
= 0

⇒ m
d2x

dt2
= −dV

dx

and we get Newton’s equation back. Then what have we gained? Well, the
Lagrangian is a scalar function, so it is independent of coordinate transforma-
tions. This makes it easier to solve problems in non-rectangular coordinate
systems. Furthermore, the Lagrangian formalism makes it straightforward to
apply constraints on the motion, which can be extremely complicated to apply
in Newton’s formalism.
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