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1 Differential Equations

Suppose we want to solve a differential equation

Lxφ(x) = λ(x),

where Lx is a linear operator, λ(x) is an inhomogeneous term, and φ(x) is the function that we would like
to solve for. In general, λ(x) can be quite complicated, which could make it difficult to find a solution.
However, using Green’s functions it is possible to take advantage of the linearity of Lx to replace this
problem with an integral and a simpler differential equation.

Theorem 1.1. If we define a Green’s function G(x,x′) so that

LxG(x,x′) = δ(x− x′),

then the solution to Lxφ(x) = λ(x) is

φ(x) =
∫
G(x,x′)λ(x′) d3x′.

Proof. We can verify this by plugging the claimed solution into the differential equation.

Lxφ(x) = Lx

∫
G(x,x′)λ(x′) d3x′

Lxφ(x) =
∫
LxG(x,x′)λ(x′) d3x′

Lxφ(x) =
∫
δ(x− x′)λ(x′) d3x′

Lxφ(x) = λ(x)

so φ(x) satisfies the differential equation.

So it is not necessary to solve the original differential equation. We can instead solve the differential
equation for G(x,x′), which has a simple delta function inhomogeneous term, and then do an integral.
Doing the integral does require an extra step, but it is often worth the cost in order to simplify the
differential equation. But there is an even more important benefit of Green’s functions that we will see in
the next section.

2 Poisson’s Equation

One of the most efficient ways of calculating electric fields in electrostatics is to solve Poisson’s equation
for the potential and then take the negative gradient to get the field. Let’s try using Green’s functions to
solve Poisson’s equation

∇2φ(x) = −ρ(x)
ε0

.

Theorem 1.1 says that we should define G(x,x′) so that

∇2G(x,x′) = δ(x− x′).



Mathematically, this is not too easy to solve. Fortunately we can use our knowledge of electrostatics to
see the solution. This is still a form of Poisson’s equation, so G(x,x′) must be the potential of a charge
distribution that looks like a delta function. Well, that’s just a point charge. So if we treat x′ as a constant
parameter,

∇2G(x,x′) = −ρG(x,x′)
ε0

= δ(x− x′)

⇒ ρG(x,x′) = −ε0δ(x− x′)

This means that G is the potential of a point charge of charge q = −ε0 at x′, so

G(x,x′) =
1

4πε0
q

|x− x′|
= − 1

4π
1

|x− x′|

Now Theorem 1.1 tells us the solution for φ(x)

φ(x) =
∫
G(x,x′)λ(x′) d3x′ =

∫ (
− 1

4π
1

|x− x′|

)(
−ρ(x

′)
ε0

)
d3x′ =

1
4πε0

∫
ρ(x′)
|x− x′|

d3x′.

But if that was all that Green’s functions did for us, then they wouldn’t be too impressive because we’ve
all seen that same derivation before, just without any mention of Green’s functions. So why are we going
through all this trouble?
The reason is boundary conditions. The crucial observation is the following. No matter what function you
pick for G(x,x′), as long as it satisfies the defining differential equation, then the solution for φ(x) given
in Theorem 1.1 works. This means that we can always add a homogeneous solution

LxG0(x,x′) = 0

to the particular solution in G(x,x′). Then it is fine to use the new form G′(x,x′) = G(x,x′)+G0(x,x′) in
the solution of φ(x) and if you choose the homogeneous solution appropriately, you can make the integral
for φ(x) simplify drastically. But it’s not clear how we can do this until we use Green’s theorem to rewrite
the integral solution of Poisson’s equation.

3 Green’s Second Identity

Our objective is to find a solution of Poisson’s equation that only requires integration over a finite region
of interest rather than over all space. This is because many problems in electrostatics are specified with
conditions on finite boundaries, for example the potential on the inside surfaces of a container. Green’s
second identity is a simple consequence of the divergence theorem and some vector identities. It will allow
us to write a solution of Poisson’s equation in terms of an integral over a finite volume plus an integral
over the bounding surface. The Green’s function can then be chosen so as to cause one of the terms in the
surface integral to drop out.

Theorem 3.1. (Green’s Second Identity) Consider a closed volume V bounded by a surface S. Let ψ1 and
ψ2 be scalar fields defined on V and S. Then∫

V

(
ψ1∇2ψ2 − ψ2∇2ψ1

)
d3x =

∮
S

(
ψ1
∂ψ2

∂n
− ψ2

∂ψ1

∂n

)
da

Proof. The divergence theorem says ∫
V
∇ ·A d3x =

∮
S
A · n da.

Now we pull a trick and let A = ψ1∇ψ2.∫
V
∇ · (ψ1∇ψ2) d3x =

∮
S
(ψ1∇ψ2) · n da.



Next we use the product rule and the definition of the normal derivative to obtain Green’s first identity,∫
V

(
ψ1∇2ψ2 +∇ψ1 · ∇ψ2

)
d3x =

∮
S
ψ1
∂ψ2

∂n
da.

Finally, if we interchange ψ1 and ψ2 and subtract the resulting equation from the previous equation, then
the ∇ψ1 · ∇ψ2 term will cancel out, yielding Green’s second identity,∫

V

(
ψ1∇2ψ2 − ψ2∇2ψ1

)
d3x =

∮
S

(
ψ1
∂ψ2

∂n
− ψ2

∂ψ1

∂n

)
da

So let’s use this theorem to find a new way to write the solution of Poisson’s equation. We just have to
choose ψ1 and ψ2 appropriately. Let ψ1 = φ(x) and ψ2 = G(x,x′) where x′ is taken to be a constant
parameter,∫

V

(
φ(x)∇2G(x,x′)−G(x,x′)∇2φ(x)

)
d3x =

∮
S

(
φ(x)

∂G(x,x′)
∂n

−G(x,x′)
∂φ(x)
∂n

)
da

∫
V

(
φ(x)δ(x,x′)−G(x,x′)λ(x)

)
d3x =

∮
S

(
φ(x)

∂G(x,x′)
∂n

−G(x,x′)
∂φ(x)
∂n

)
da

So if x′ is in the volume V , then

φ(x′) =
∫

V
G(x,x′)λ(x) d3x+

∮
S

(
φ(x)

∂G(x,x′)
∂n

−G(x,x′)
∂φ(x)
∂n

)
da

Finally we can see the real reason for using Green’s functions. Suppose we have Dirichlet boundary
conditions on some surface. Then we can let that surface be S (so V will be the enclosed volume) and
then choose a homogeneous solution to add to G(x,x′) so that it will be zero on the whole surface S.
Then the last term in the surface integral is always zero, and thus there is no need to know what the
normal derivative of the potential is. You could derive this same solution without any reference to Green’s
functions, but then the fact that you can add an inhomogeneous solution to all the places where G shows
up would not be obvious at all. Green’s functions make it clear that this can be done, and that makes it
much easier to solve boundary value problems.

4 Example

Suppose we have a potential V (x, y) specified on an infinite plane z = 0 and we need to calculate the
potential everywhere in the half-space given by z > 0. Since the potential is specified, we have Dirichlet
boundary conditions for Poisson’s equation. The general solution of the corresponding Green’s function
differential equation, ∇2G(x,x′) = δ(x− x′) is

G(x,x′) = − 1
4π

1
|x− x′|

= − 1
4π

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

+G0(x,x′)

where ∇2G0(x,x′) = 0 in the region of interest, z > 0. By looking at the result of the last section, we
notice that we know φ(x), but not ∂φ(x)

∂n , so we would like to use the freedom of G0(x,x′) to take the
coefficient of ∂φ(x)

∂n to zero which will allow us to get away with our lack of knowledge. The coefficient is
G(x,x′) and we need it to be zero on the surface z = 0. This can be accomplished by setting G0(x,x′) to
be the potential of a point charge at the location given by reflecting x′ about the z = 0 plane. This won’t
affect the answer because ∇2G0(x,x′) is only non-zero at the location of the image charge which is outside
of the region of interest. Therefore,

G(x,x′) = − 1
4π

(
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
+

1√
(x− x′)2 + (y − y′)2 + (z + z′)2

)



The equation to solve is now

φ(x′) =
∫

V
G(x,x′)

(
−���ρ(x)

ε0

)
d3x+

∮
S

(
φ(x)

∂G(x,x′)
∂n

−�����
G(x,x′)

∂φ(x)
∂n

)
da

φ(x′) =
∮

S
φ(x)

∂G(x,x′)
∂n

da

From this point it is just a matter of computing derivatives and the integral.


