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Introduction

Geometrical optics is a formalism for analyzing sim-
ple optical systems. It models the optical phenom-
ena of reflection and refraction, but not other phe-
nomena such as diffraction and polarization.

A point source of light is a light source that emits
light of equal intensity in all directions from a sin-
gle point in space. When a point source is first
turned on, light travels outward from this point at
the speed of light, which is approximately 2.998×108

m/s. If we imagine the boundary that shows how far
light has travelled from the point source, it will be
a sphere whose radius grows at the speed of light.
This boundary is known as the wave front of the
light coming from the point source. When this wave
front encounters an optical device such as a lens or
mirror, it can become distorted and lose its spherical
shape. In geometrical optics, these distortions can
be tracked using light rays, drawn as lines or curves,
that are perpendicular to the wave front at every
step of the wave front’s propagation.

Properties of Light Ray Behavior

In order to use geometrical optics, we need to un-
derstand how light rays behave. Below are the three
basic properties of light ray behavior.

(a) When light rays are in empty space,
they just continue in a straight line.

(b) When a light ray strikes the surface
of a mirror, reflection occurs. Ac-
cording to the law of reflection, the
angle of the incident beam is equal to
the angle of the reflected beam. By
convention, these angles are measured
with respect to the perpendicular to
the surface of reflection.

(c) When a light ray encounters the sur-
face of a lens upon entering or exit-
ing, the ray is bent by a phenomenon
called refraction. The law of refrac-
tion (also known as Snell’s Law) says
that the angle of the refracted beam
θ2 satisfies n1 sin(θ1) = n1 sin(θ2), where
n1 is the index of refraction of the

first medium, n2 is the index of refrac-
tion of the second medium, and θ1 is
the angle of incidence, again measured
with respect to the perpendicular to
the lens’ surface.

These three properties of light rays encode all the
physics that is used in geometrical optics. Although
these properties are technically sufficent to analyze
any lens/mirror system, it is rather time consuming
to use them directly. You would have to use a pro-
tractor every time a ray strikes the surface of a lens
or mirror. Instead it is much better to utilize the
special properties of ideal lenses and mirrors.

Ideal Lenses and Mirrors

The following properties are the definitions of the
ideal lenses and mirrors. In these definitions, the
parameter f is the focal length, which is a parameter
that depends on the curvature and index of refrac-
tion. Also, the term optical axis refers to the axis of
rotational symmetry of the device, perpendicular to
the surface at the center point.

(a) An ideal convex (converging) lens
sends rays parallel to the optical axis
to a focal point a distance f on the
other side of the lens.

(b) An ideal concave (diverging) lens
causes rays parallel to the optical
axis to diverge as if coming from a vir-
tual focus a distance f in front of the
lens.

(c) An ideal concave (converging) mirror
sends rays parallel to the optical axis
to a focal point a distance f in front
of the mirror.



(d) An ideal convex mirror (diverging)
causes rays parallel to the optical
axis to diverge as if coming from a vir-
tual focus a distance f behind the mir-
ror.

Also, for any of these cases, the incoming and out-
going rays can be interchanged because lenses and
mirrors are always symmetrical with respect to in-
coming and outgoing light rays.

Image Formation

The most common use of geometrical optics is to
find where and how images form. A real image is
a configuration of light rays that will reproduce the
appearance of an object if a screen is placed at its
location. For example, if you have a light source
and an object on one side of a convex lens, there will
be some location on the other side where you can
place a screen to see the object clearly in focus on
the screen. If an image is in focus, then all light rays
that originated from one point on the object must
arrive at a single point in the image. If this is not
the case, then rays from different parts of the object
will mix and blend together on the screen, causing
blurring. Using this fact that light rays must recon-
verge in order to form a real image, we can find the
image location using a ray diagram.

How to Draw a Ray Diagram

(a) Draw the lens and its optical axis as a
dotted line.

(b) Draw the object as an arrow starting
somewhere on the optical axis pointing
perpendicular to the axis.

(c) Draw a ray from the end of the arrow
to the center of the lens and continu-
ing straight through to the other side,
or to the center of the mirror and re-
flecting off at the same angle.

(d) Draw a ray from the top of the ar-
row, parallel to the optical axis until
it reaches the midpoint of the lens or
the surface of the mirror, then bend
this line toward the focus or directly
away from the virtual focus accord-
ing to the definition of the appropri-
ate ideal mirror or lens.

(e) Find the intersection of these two
rays and draw an arrow for the real
image perpendicular to the optical
axis, starting on the optical axis and
extending to the point of intersection.

The first two steps are just to setup the problem.
The third step is based on the thin-lens approxima-
tion. If the lens is not thin, then a ray heading to-
ward the center of the lens will not emerge from the
other side of the lens in the same direction. But if
the lens is thin, the angle of refraction on the far
side cancels out the angle from the near side since
the situation is just inverted (air to glass, then glass
to air, but otherwise symmetrical). The fourth step
is justified based on the definition of ideal lenses and
mirrors. The fifth step is a result of the definition of
a real image.

Gaussian Lens Equation

Using the ray diagram for an ideal convex lens, we
can find a relationship between the focal length and



the distances from the lens to the object and image
called the Gaussian lens equation,
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where f is the focal length, do is the distance from
the lens to the object, and di is the distance from
the lens to the image.

To derive this equation, consider the figure of the
ray diagram on the previous page. Let the height of
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Then by similar triangles,
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Multiplying the second by (di − f)/ho,
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di − f

f
=
di

do

Dividing by di,

1
f
− 1
di

=
1
do
,

which gives the Gaussian Lens Equation upon rear-
rangement.

This equation can be applied to both convex and
concave lenses if certain sign conventions are used.
According to the convention, the focal length of con-
cave (diverging) lenses is negative. This requires
that either the image or object distance must be
negative. This negative sign in the distance flips
the side of the lens that the image or object is on,
so if just one is negative, then both the image and
object will be on the same side of the lens. When
the image location is negative, the image is called a
virtual image.

Virtual Images

There is a second type of image that is completely
different from real images. A virtual image is a name
given to the image that appears to us on the other
side of a lens or mirror. For example, the image
of yourself in a mirror is a virtual image, as is an
enlarged view of text under a magnifying glass. Vir-
tual images do not produce a focused configuration

of light rays at the image location; it is just an appar-
ent image, so it can never be projected on a screen
at the image location. Our eyes are designed with a
converging lens so that they can focus diverging rays
because in the absence of any optical devices, rays
from objects naturally diverge. This is why our eyes
can focus the virtual image from the rays coming out
of a diverging lens.

Combining Optical Devices

Some problems in geometrical optics involve a series
of two or more lens and/or mirrors. For example,
light rays may pass through two consecutive lens be-
fore forming an image on a screen. These problems
can still be analyzed with the Gaussian Lens Equa-
tion if the following rules are obeyed.

• Trace through the path that light
rays take through the system, starting
from the light source.

• Every time the rays strike a device,
compute the image location (whether
real or virtual) with the Gaussian
Lens Equation, and use the image at
this location as a virtual object for
the next device that the light rays
will strike. Note that sometimes the
image location will be on the far side
of a barrier where no light can reach,
but it still works because it is a math-
ematial trick.

• Be sure to use the proper sign conven-
tions with negative distances for vir-
tual images and objects.

In some cases you may have to leave some image
locations as unknown variables and solve for them
after writing down all the equations.

* Images courtesy of Wikipedia (user DrBob).


