Formula Functions

Chris Clark

March 19, 2004

Definition 0.1. A formula function is an entire function obtained by a finite composition of
(1) the parameter(s) of the function
(2) constant numbers
(3) functions from a finite set of elementary operators
(4) previously defined formula functions.

1 Conventions

The set of elementary operators will be $\left\{+,-,,^{,} /,^{\wedge},!\right\}$. Factorial can only be used on integers. Exponentiation will be single-valued, so any square root (or even root) will return the positive root.

To make functions that return logical truth values, we need some way of generating discontinuities. It is now a common convention that $0^{0}=1$, which provides a discontinuity in the function $0^{|x|}$. This function is similar to the Kronecker Delta function with one parameter fixed as 0 and it is very useful for logic functions.

2 Formula Functions

$$
\begin{array}{ll}
\operatorname{abs}(x)=\sqrt{x^{2}} & g t e(x, y)=\operatorname{equ}(y, \min (x, y)) \\
\operatorname{avg}(x, y)=\frac{1}{2}(x+y) & \operatorname{lte}(x, y)=\operatorname{equ}(y, \max (x, y)) \\
\max (x, y)=\operatorname{avg}(x, y)+\frac{1}{2} \operatorname{abs}(x-y) & \operatorname{uni}(x)=\operatorname{gte}(x, 0) * \operatorname{lte}(x, 1) \\
\min (x, y)=\operatorname{avg}(x, y)-\frac{1}{2} \operatorname{abs}(x-y) & \operatorname{jag}(x)=x * \operatorname{uni}(x)(1-\operatorname{equ}(x, 1)) \\
\operatorname{not}(x)=0^{a b s(x)} & * \operatorname{dec}(x)=\Sigma_{n=-\infty}^{\infty} j \operatorname{ag}(x-n) \\
\operatorname{equ}(x, y)=\operatorname{not}(x-y) & \operatorname{int}(x)=x-\operatorname{dec}(x) \\
\operatorname{sig}(x)=\frac{x}{\operatorname{abs}(x+\operatorname{not}(x))} & \operatorname{aux}(x, y)=\frac{y}{x+2 y * \operatorname{not}(x)+\operatorname{not}(x) * \operatorname{not}(y)} \\
\operatorname{pos}(x)=\operatorname{equ}(x, \operatorname{abs}(x)) & \operatorname{div}(x, y)=\operatorname{equ}(\operatorname{aux}(x, y), \operatorname{int}(\operatorname{aux}(x, y)) \\
\operatorname{neg}(x)=\operatorname{equ}(x,-\operatorname{abs}(x)) & \operatorname{prm}(x)=\operatorname{div}(x,(x-1)!+1)
\end{array}
$$

