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The Problem

It is often claimed in the physics literature that 1
2π

∫∞
−∞ e

ikx dk is equal to the Dirac delta function, but this
relation is not strictly true because the integral is not convergent. To see why this integral cannot converge,
just consider the real part, which is 1

2π

∫∞
−∞ cos(kx) dk by Euler’s formula. The integral is oscillatory, so

it never converges to an exact value. However, it is still possible to define a correspondence based on a
double integral. Let the function g(x) correspond to the integral

∫∞
−∞ f(x, k) dk iff

PV

∫ ∞
−∞

∫ b

a
f(x, k) dx dk =

∫ b

a
g(x) dx

for all finite choices of a, b. Here, PV denotes the principal value of the integral. Notice that the order of
integration has been switched. Switching the order of integration back is not justified and will break the
equality. If we write this correspondence as

∫∞
−∞ f(x, k) dk .= g(x), then we can show that∫ ∞

−∞
eikx dk

.= 2πδ(x)

The Correspondence

Theorem 1.
∫∞
−∞ e

ikx dx
.= 2πδ(x)

Proof. We must show

PV

∫ ∞
−∞

∫ b

a
eikx dx dk =

∫ b

a
2πδ(x) dx

for all finite values of a, b.

PV

∫ ∞
−∞

∫ b

a
eikx dx dk = PV

∫ 0

−∞

∫ b

a
eikx dx dk + PV

∫ ∞
0

∫ b

a
eikx dx dk

Performing the substitution k → −k in the first integral,

= PV

∫ 0

∞

∫ b

a
ei(−k)x dx d(−k) + PV

∫ ∞
0

∫ b

a
eikx dx dk

= PV

∫ ∞
0

∫ b

a
e−ikx dx dk + PV

∫ ∞
0

∫ b

a
eikx dx dk

= 2PV
∫ ∞

0

∫ b

a
Re[eikx] dx dk

Using Euler’s formula, eia = cos(a) + i sin(a),

= 2PV
∫ ∞

0

∫ b

a
cos(kx) dx dk

= 2 lim
ε→0

lim
N→∞

∫ N

ε

∫ b

a
cos(kx) dx dk

= 2 lim
ε→0

lim
N→∞

∫ N

ε

(
sin(bk)
k

− sin(ak)
k

)
dk



Since the lower limit of integration never reaches zero, we do not have to worry about the division by zero.

= 2 lim
ε→0

lim
N→∞

(∫ N

ε

sin(bk)
k

dk −
∫ N

ε

sin(ak)
k

dk

)
Now we do the substitution u = bk in the first integral and u = ak in the second.

= 2 lim
ε→0

lim
N→∞

(∫ bN

bε

sin(u)
u

du−
∫ aN

aε

sin(u)
u

du

)
If either of the variables a and b are negative, the limits become 0 to −∞, which negates the value of the
integral since the integrand is symmetric about zero. Therefore,

= 2 lim
ε→0

lim
N→∞

(
sgn(b)

∫ N

ε

sin(u)
u

du− sgn(a)
∫ N

ε

sin(u)
u

du

)
The integral here is called the sine integral where the upper limit of integration is the parameter to the
sine integral function.

= 2(sgn(b)− sgn(a))Si(∞) = π(sgn(b)− sgn(a))

since Si(∞) = π/2. Now, we notice that
∫ b
a 2πδ(x) dx = π(sgn(b)−sgn(a)), which completes the proof.

The Fourier Transform

As in illustration of the usefulness of this correspondence, we will (non-rigorously) derive the expression
for the Fourier transform by assuming that the correspondence behaves like an equality when double
integrals are present, and assuming that the order of integration is interchangeable. Starting with the
sifting property of the Dirac delta function,

ψ(x) =
∫ ∞
−∞

ψ(x′)δ(x− x′) dx′

=
∫ ∞
−∞

ψ(t)
[

1
2π

∫ ∞
−∞

eik(x−x
′) dk

]
dx′

=
1√
2π

∫ ∞
−∞

[
1√
2π

∫ ∞
−∞

ψ(t)e−ikx
′
dx′
]
eikx dk

=
1√
2π

∫ ∞
−∞

φ(k)eikx dk

where
φ(k) =

1√
2π

∫ ∞
−∞

ψ(x′)e−ikx
′
dx′

is the Fourier transform of ψ(x).


