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INTRODUCTION

Why is it that a figure skater spins faster when they
pull their arms inwards? Conservation of angular mo-
mentum gives us a quick answer. Take the simplifying
case of a point mass at radius r and rotational speed v.

L = Iω = mr2v/r = mrv

dL

dr
= 0 ⇒ mv + mr

dv

dr
= 0 ⇒ dv

dr
= −v

r
(1)

However, this does not really shed any light on the mech-
anism that causes the acceleration. Any acceleration is
caused by a force and it may not be obvious how that
force operates in this situation. By using conservation of
angular momentum the mechanism is abstracted away.
This paper explains the mechanism, which we call radial
force deflection, directly in terms of Newton’s laws.

EXPLANATION

Naturally our starting point is Newton’s second law

dp
dt

= F

We are concerned with changes in speed, so first we find
the time derivative of p = |p|.

dp

dt
=

d

dt

(
p
p̂

)
=

p̂ · ṗ− p · ˙̂p
p̂ · p̂ = F · p̂

where the second term is zero because a unit vector can
never change in the direction of itself since it’s length is
constant.

In Fig. 1, the point mass is spiraling inwards for some
duration. During its inward spiral, it has a component
of momentum in the radial direction and that means F ·
p̂ 6= 0, so the speed increases. Thus the explanation is
that the radial force causes an acceleration of the point
mass during its inward spiral due to the fact that its
momentum has a component in the radial direction.

CALCULATION

Now we must check that this explanation implies equa-
tion (1) for the rate of change of velocity with respect to

FIG. 1: Spiraling inward

radius. Our strategy is to look at the inward spiral for
an infinitesimal time interval dt. During this interval the
spiral path will form a constant angle with the circular
path at the same radius, call this angle φ. Then we have

dp

dt
= F · p̂ = F sin(φ) ⇒ dv

dt
= a sin(φ) (2)

The next step is to find an expression for φ. In Fig.

FIG. 2: Zooming in

2 we see that if we zoom in on the spiral path so that
it only shows the time interval dt, then it becomes a
straight line because it must intersect the two arcs with
the same angle and the arcs are straight lines. Now define
the radial speed

vr =
∣∣∣∣
dr

dt

∣∣∣∣ (3)
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Then [1]

tan(φ) =
vrdt

vdt
=

vr

v
(4)

We can now find sin(φ) using trigonometric identities.

tan(φ) =
sin(φ)
cos(φ)

and cos2(φ) = 1− sin2(φ)

sin2(φ) = tan2(φ)(1− sin2(φ))

sin2(φ)(1 + tan2(φ)) = tan2(φ)

sin(φ) =
tan(φ)√

1 + tan2(φ))
=

vr/v√
1 + v2

r/v2

sin(φ) =
vr√

v2 + v2
r

(5)

So by equation (2),

dv

dt
=

avr√
v2 + v2

r

(6)

Now we will make an assumption. We assume that v is a
function only of r and the initial conditions, which means
that the velocity at a particular radius does not depend
on how the radial force was applied. This allows us to
write

dv

dt
=

dv

dr

dr

dt
= −dv

dr
vr (7)

by the chain rule. Here we have taken the case that the
point mass is being pulled inwards, hence the negative
sign. Inserting equation (6),

dv

dr
= − a√

v2 + v2
r

(8)

The final step is to find an expression for vr in terms
of a (which is proportional to the applied force). This is
done by generalizing the textbook derivation of the cen-
tripetal force to cases where the initial and final velocities
are not the same.

Fig. 3 depicts the change in the velocity during an
infinitesimal time interval. The first thing to notice is
that the angle α is still infinitesimal despite the fact that
the velocity vector is rotated by the angle φ from the
tangential direction because the rotation by φ is present
in both vectors. The angle α is thus purely due to the
rotation of the point mass at radius r,

α = ωdt =
v

r
dt (9)

FIG. 3: Velocity vectors

To get the desired expression for vr, we start with the
law of cosines and keep terms of order dt2.

c2 = a2 + b2 − 2ab cos(θc)

(adt)2 = v2 + (v + dv)2 − 2v(v + dv) cos(α)

a2dt2 = 2v2 + 2vdv + dv2 − (2v2 + 2vdv) cos(α)

a2dt2 = (2v2 + 2vdv)(1− cos(α)) + dv2

a2dt2 = (2v2 + 2vdv)(1− (1− α2/2)) + dv2

a2dt2 = (2v2 + 2vdv)
(

1
2

v2

r2
dt2

)
+ dv2

Now by equation (2), dv = a sin(φ)dt so the 2vdv term is
of order dt3 and we drop it.

a2dt2 =
v4

r2
dt2 + a2 sin2(φ)dt2

a2 − v4

r2
= a2 sin2(φ)

The second term on the left is the square of the well-
known centripetal acceleration ac. [2] Inserting equation
(5) for sin(φ),

a2 − a2
c = a2 v2

r

v2 + v2
r

(a2 − a2
c)(v

2 + v2
r) = a2v2

r

a2v2 − a2
cv

2 + a2v2
r − a2

cv
2
r = a2v2

r
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a2v2 − a2
cv

2 − a2
cv

2
r = 0

v2
r =

v2

a2
c

(a2 − a2
c)

vr =
v

ac

√
a2 − a2

c

vr =
r

v

√
a2 − a2

c (10)

Finally we plug equation (10) into equation (8).

dv

dr
= − a√

v2 + r2

v2 (a2 − a2
c)

= − a

ra/v

dv

dr
= −v

r
(11)

Now it is clear that our explanation gives the same
result as using conservation of angular momentum as seen
in equation (1).

CONCLUSION

We have found in two pages what angular momentum
tells us in two lines, but we have gained an insight into
rotational motion that angular momentum overlooks.

[1] You may think that vdt would be along the diagonal path,
but vdt is how far the mass would travel in a time dt if
it was at the constant velocity v. The diagonal path is a
result of an acceleration and so is longer than vdt.

[2] We could have skipped to this point by starting with a =p
a2

c + (dv/dt)2, but this equation is certainly not obvious.


