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1 Fundamental Equations

Definition of work:

W =
∫ rf

ri

Fnet · dr

Segregation of conservative work:

W = Wc + Wnc

Definition of potential energy:

Wc = −∆U

Work-energy theorem:

W = ∆K

Definition of Total Energy:

E = K + U

Non-conservation of Energy:

Wnc = ∆E

2 The Work-Energy Theorem

Theorem 2.1. If r(t) describes a smooth path, then dr = vdt.

Proof. The quantity dr is the difference vector between two positions on the path that are infinitesimally
close, so dr = r(t + dt) − r(t). But since the difference is infinitesimal, we can assume that the path is
straight and the object is travelling with constant velocity. This is because if you zoom in far enough
on a smooth curve, it will always look flat at every point and acceleration only increases velocity after a
finite time has elapsed. So we can use the kinematic equation for straight-line motion at constant velocity,
xf = xi + vt. In this case, r(t + dt) is the final position, r(t) is the initial position, and dt is the time
duration, so r(t + dt) = r(t) + vdt. Therefore, dr = r(t + dt)− r(t) = vdt.

Theorem 2.2. For objects of constant mass, the total work done on the object during a process is equal
to the change in kinetic energy of the object during that process, so W = ∆K.

Proof. We start with the definition of work.

W =
∫ rf

ri

Fnet · dr

Since the mass of the object is constant, F = dp
dt = d(mv)

dt = mdv
dt .

W =
∫ rf

ri

(
m

dv
dt

)
· dr

Now we perform a change of variables from r(t), which describes a trajectory as a function of time, to t
using the relation dr = vdt. We must also change the limits of integration to the corresponding times.

W = m

∫ tf

ti

dv
dt
· vdt

By the product rule we have d
dt(v · v) = dv

dt · v + v · dv
dt = 2dv

dt · v, and dividing by 2 on each side we get
dv
dt · v = 1

2
d
dt(v · v), which is the integrand.

W = m

∫ tf

ti

1
2

d

dt
(v · v)dt

By the second fundamental theorem of calculus,

W =
1
2
m(v · v)|t=tf

t=ti

W =
1
2
m(v2

f − v2
i ) = Kf −Ki = ∆K


