
The Total Derivative

Chris Clark February 14, 2019

1 Function Notation

The notation f(x) refers to the value of the function f when applied to the argument x. We can also
talk about properties of a function f without applying it to a specific argument. A function f has one or
more parameters which correspond to the arguments that the function takes. Often it is not necessary to
give names to these parameters, but in some cases like taking derivatives of multi-parameter functions, it
becomes necessary to refer to the parameters somehow and naming them is a convenient solution.

The common approach to naming function parameters is with an abuse of notation, using the same notation
for the value of f at x, “f(x)”, to mean “a function f with parameter x”.

This can lead to some confusion, so here we will use the following notation:

• f(x) is the value of the function f at x

• f(x) is a function f of parameter x

Underlined variables can be thought of as annotations with no semantic meaning since f(x) = f .

A function’s parameter names are arbitrary and can be chosen freely without affecting the value of any
applications. It doesn’t matter if argument names match with parameter names; f(y) is a valid application
of a function f(x) if y is a defined value.

2 Derivative Notation

In Leibniz notation, the derivative of a single-parameter function f(x) is written as

df

dx

The x in the notation represents the name of the parameter of the function f . For single-parameter
functions, having the parameter name in the notation is redundant since there is only one parameter,
and in fact it is somewhat strange that it appears in the notation because the parameter name is totally
arbitrary and sometimes isn’t even specified. However, for multi-parameter functions we need a way of
specifying which parameter to take the derivative with respect to, and showing the parameter allows us
to do this. By including the parameter name here even for the single-parameter case, we can make the
notation more consistent across all functions arities.

The derivative of a multi-parameter function f(..., x, ...) with respect to the parameter named x is written
as

∂f

∂x

So in the absence of any abuse of notation:

• The Leibniz notation for a derivative of a single-parameter function must use the d prefix.

• The Leibniz notation for a derivative of a multi-parameter function must use the ∂ prefix.

• The name in the bottom of the Leibniz notation for a derivative must be the name of a parameter
to the function in the top.



3 The Chain Rule

The chain rule says that if we have functions f(x), g(y), and h(x) where h(x) = g(f(x)) then

dh

dx
(x) =

dg

dy
(f(x))

df

dx
(x)

Note that we could have chosen the name of the parameter of g to be “f” so that it more closely resembled
the argument f(x), which would also reduce the total number of names in use. This naming is potentially
confusing because it gives the same name to two different things, but it isn’t technically ambiguous because
the the two names are effectively in different namespaces: the names on the bottom of derivatives are always
parameter names and all other names are value names. With this renaming we have:

dh

dx
(x) =

dg

df
(f(x))

df

dx
(x)

With an abuse of notation, we can suppress the arguments and re-insert them when necessary (if we can
safely remember what they should be):

dh

dx
=

dg

df

df

dx

4 The Total Derivative

The total derivative is a generalization of the chain rule.

Say we have functions x(t), y(t), and f(u, v). Then if we define a function f̃(t) by f̃(t) = f(x(t), y(t)), the
generalization of the chain rule tells us that

df̃

dt
(t) =

∂f

∂u
(x(t), y(t))

dx

dt
(t) +

∂f

∂v
(x(t), y(t))

dy

dt
(t)

Using the same conventions of renaming the parameters f(u, v) −→ f(x, y) and suppressing arguments:

df̃

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

It is a common abuse of notation to drop the tilde on f and write this as df
dt .

1 We can almost think of
this as an extension of the d-prefix Leibniz notation because it isn’t currently defined for multi-parameter
functions. Since we know f is a multi-parameter function, if we see it inside a d-prefix derivative, this
indicates that we have to implicitly convert it to a single-parameter function. The problem is that the
functions x(t) and y(t) needed to do the conversion are not explicit in the notation df

dt , which means that
the notation is ambiguous.

Let’s say we want to compare f̃(t) with a new function f̃ ′(t) given by f̃ ′(t) = f(x′(t), y′(t)) for some
additional functions x′(t) and y′(t). Because f occurs in both f̃ and f̃ ′, and a single function should only
have a single set of parameter names, we keep f as f(x, y). In this case the total derivative is

df̃ ′

dt
(t) =

∂f

∂x
(x′(t), y′(t))

dx′

dt
(t) +

∂f

∂y
(x′(t), y′(t))

dy′

dt
(t)

1See The Calculus of Several Variables by Robert C. Rogers page 107.



Notice that now we have to be more careful about the distinction between parameter names and argument
names because we have two sets of argument names in scope (primed and unprimed) for the same function,
which only has one set of parameter names.

If we had chosen to rename the parameters of f to f(x′, y′), this equation for df̃ ′

dt would look more like
the usual chain rule form where the tops and bottoms cancel, but then the corresponding equation for
df̃
dt wouldn’t have the usual form. If we use different parameter names for each case, we could make both

equations have the usual form, but then we would have to be keep track of the translations ∂f
∂x = ∂f

∂x′ and
∂f
∂y = ∂f

∂y′ because in this case primed and unprimed parameters both refer to the same parameter of f .
Maintaining f as f(x, y) throughout seems preferable.


