
1. Quantum Mechanics (Spring 2005)

Consider a particle of charge q in a one-dimensional harmonic oscillator potential. Suppose there is
also a weak electric field E so that the potential is shifted by

H ′ = −qEx

(a) Calculate the correction to the simple harmonic oscillator energy levels through second order
in perturbation theory.

(b) Now solve the problem exactly. How do the exact energy levels compare with the perturbative
result in (a)?



2. Quantum Mechanics (Spring 2005)

Show that in one space dimension any attractive potential, no matter how weak, always has at least
one bound state. Hint: Use the variational principle with some appropriate trial wave function such
as the normalized Gaussian

ψ(x) =
(

2b

π

)1/4

e−bx2

where b is a parameter.



3. Quantum Mechanics (Spring 2005)

A beam of particles scatters off an impenetrable sphere of radius a. That is, the potential is zero
outside the sphere, and infinite inside. The wave function must therefore vanish at r = a.

(a) What is the S-wave (l = 0) phase shift as a function of the incident energy or momentum?

(b) What is the total cross section in the limit of zero incident kinetic energy?



4. Quantum Mechanics (Spring 2005)

An electron is at rest in a constant magnetic field pointing along the z direction. The Hamiltonian
is

H = −µ ·B = gµo
s
h̄
·B

where B = Bon̂z. s is the electron spin. Since the electron is at rest, you can treat this as a two-state
system. Let |ψ±〉 be the eigenstates of sz with eigenvalues ± h̄

2 respectively.

(a) What are the eigenstates of the Hamiltonian, and what is the energy difference between them?

(b) At time t = 0 the electron is in an eigenstate of sx with eigenvalue +h̄/2. Calculate |ψ(t)〉 for
any t.

(c) For the state you calculated in part (b), what are the expectation values of the three components
of the spin at any time t?



5. Quantum Mechanics (Spring 2005)

An electron moves in a hydrogen atom potential – ignoring spin and relativity – in a state |ψ〉 that
has the wave function

ψ(r, θ, φ) = NR21(r)
[
2iY −1

1 (θ, φ) + (2 + i)Y 0
1 (θ, φ) + 3iY 1

1 (θ, φ)
]

where the Y m
l (θ, φ) are the spherical harmonics, Rnl(r) are the normalized hydrogen atom wave

functions, and N is a positive real number.

(a) Calculate N .

(b) What is the expectation value of Lz? (h̄L = r× p)

(c) What is the expectation value of L2?

(d) What is the expectation value of the kinetic energy in terms of h̄, c, the electron charge e or
the fine-structure constant α, and the electron mass m?

Note: The explicit forms of the functions that appear in ψ(r, θ, φ) above are

R21(r) =
1

2
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6
r

a5/2
e−r/2a Y ±1
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√

3
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√
3
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cos(θ)



6. Statistical Mechanics and Thermodynamics (Spring 2005)

A closed container is divided by a wall into two equal parts (A and B), each of volume V/2. Part A
contains an ideal gas with N/2 molecules of mass M1 while part B contains an ideal gas with N/2
molecules of mass M2. The container is kept at a fixed temperature T . The molecules of each kind
are all identical, but distinguishable from the molecules of the other kind.

(a) The partition function Z(N) of an ideal gas of N particles of mass M in a volume V is given
by

Z(N) =
1

N !


 V√

2πh̄2/MkBT




N

Give the partition function of the gas in the container before and after the wall is removed.
What are the entropy and pressure before and after the wall is removed?

(b) How much heat is absorbed or released following the removal of the wall? Is the removal of the
wall a reversible or irreversible process?

(c) Same question as (b), but now for the case that the two kinds of molecules are indistinguishable
from each other (so M1 = M2). Compare your answers for (b) and (c) and provide a physical
explanation for the difference in entropy between the two cases.



7. Statistical Mechanics and Thermodynamics (Spring 2005)

A (nearly) ideal gas with a temperature T and pressure P contains atoms of mass M that are either
in the ground state or in the first excited state. An atom that returns to the ground state from the
first excited state emits a photon of frequency fo. For a stationary observer observing the spectral
line emitted by a moving atom, this frequency is shifted by the Doppler effect to

f(v‖) = fo(1 + v‖/c)

where c is the velocity of light and v‖ is the projection of the velocity of the atom on the line of sight
from the observer to the atom.

(a) What is the statistical distribution P (f) of the frequency of the spectal line? Assume the
atoms obey the Maxwell-Boltzmann distribution.

(b) Obtain from P (f) the contribution by the Doppler effect to the width
√
〈(f − fo)2〉 of the

spectral line. Can you think of a way this effect could be exploited in the study of stellar
atmospheres?

(c) The natural line shape P (f) of an atomic spectral line is, according to quantum mechanics,
given by

P (f) ∼ 1
(f − fo)2 + τ−2

where τ is the lifetime of the excited state. For atoms in a dense gas, the actual lifetime of the
excited state is not intrinsic, but instead determined by the time interval between successive
collisions between atoms. Let the cross section of an atom equal σ. Obtain an expression
for τ in terms of σ, the pressure P and the temperature T . Under which conditions will this
“collisional” broadening of the spectral line dominate over the Doppler broadening as computed
under (b)?



8. Electricity and Magnetism (Spring 2005)

Consider a two-dimensional (r, θ) electrostatic problem consisting of two infinite plates making an
angle α with each other and held at a potential difference V , as shown below:

(a) Find the potential φ(r, θ) in the vacuum region between the plates.

Now insert a wedge dielectric, of dielectric coefficient ε, and angle β, resting on the bottom plate as
shown below:

(b) Find the pressure experienced by the bottom plate at a distance r from the apex (from the line
joining the two plates).



9. Electricity and Magnetism (Spring 2005)

An infinitely thin current sheet carrying a surface current λ = λoẑ cos(ωt) is sandwiched between a
perfect conductor (σ = ∞) and a material having finite conductivity σ and magnetic permeability µ.
The angular frequency ω is sufficiently low that magnetostatic conditions prevail. λo is a constant,
ẑ is a unit vector parallel to the interface located at x = 0, and t is the time.

(a) Find the appropriate partial differential equation that governs the behavior of the magnetic
field H for x > 0 (above the current sheet). Do not solve.

(b) What is the appropriate boundary condition for H in this system?

(c) Find the magnetic field H at an arbitrary distance x > 0 at time t.



10. Electricity and Magnetism (Spring 2005)

A relativistic charged particle of charge q and rest-mass mo is in a region of uniform magnetic field
Boẑ. At time t = 0 the particle has zero velocity along ẑ (that is βz = vz/c = 0) and finite transverse
speed β⊥ = βo, with

β⊥ =
√

v2
x + v2

y/c

Here, x, y, and z are Cartesian coordinates in the lab frame.

(a) What is the value of β⊥(t) for t > 0?

(b) What is the angular frequency Ω of rotation (that is, the gyrofrequency)? No need for a
calculation, just identify Ω.

(c) Now apply a uniform electric field Eoẑ, parallel to B, starting at t = 0. Without solving the
detailed equations, conclude what happens to the β⊥ in part (a). Does it change?



11. Electricity and Magnetism (Spring 2005)

A linearly polarized electromagnetic wave propagating through the vacuum falls on a flat metallic
surface. The wavelength of the incident wave is λ. The angle between the wave vector k and the
metal surface is equal to θ. The electric field has a magnitude Eo and a direction normal to the page
(positive y direction, see Figure). Assume that the metal surface has infinite conductivity.

(a) Show that the boundary conditions can be obeyed by adding a reflected wave to the incident
plane wave. Draw, in the Figure, the directions of the electric and magnetic field vectors of the
reflected wave such that the boundary conditions hold at the surface.

(b) Calculate the time-averaged Poynting vector of the incident plus the reflected wave in terms of
Eo. Along what direction is the electromagnetic energy being transported by the two waves?

(c) Show that the repeat length of the interference pattern of the two waves along the surface
of the plates is given by λ/ cos(θ), while the repeat length perpendicular to the surface is
given by λ/ sin(θ). It follows from this that one can insert a second metal plate at a height
D(m) = m(λ/2) sin(θ) above the first metal plate, with m an integer, without perturbing the
wave pattern.

(d) Using (c) compute the phase velocity v(f) of an electromagnetic wave trapped between two
parallel plates with spacing D as a function of the frequency f of the wave. This phase velocity
should diverge as you reduce f . Demonstrate that the fact that v(f) exceeds the velocity of
light for some f is not a violation of the principle of special relativity (even though v > c for
small f).



12. Electricity and Magnetism (Spring 2005)

A thin copper ring (conductivity σ, density ρ) is suspended so it can rotate freely about one diameter.
There is a uniform magnetic field B perpendicular to the axis of rotation. At time t = 0 the ring is
set rotating with frequency ωo. Calculate the time it takes the frequency to decrease to 1/e of its
original value, assuming the energy goes into Joule heating.



13. Statistical Mechanics and Thermodynamics (Spring 2005)

Consider the one-dimensional Ising model on a periodic lattice, that is, a chain of N spins, with
sping si = ±1 residing on the i-th site, i = 1, ..., N , forming a closed loop. The partition function in
the presence of an external magnetic field H is then

ZN =
∑

{si=±1}
exp

(
βJ

N∑

i=1

sisi+1 + βH
N∑

i=1

si

)

where β = 1/kT . Define the 2× 2 transfer matrix T with elements

T (s, s′) = exp
[
νss′ +

B

2
(s + s′)

]
(s, s′ = ±1)

where we let ν = βJ and B = βH.

(a) Show that
ZN = Tr(TN )

and hence
ZN = λN

1 + λN
2

where λ1 and λ2 are the two eigenvalues of T.

(b) Determine λ1, λ2. If λ1 denotes the larger eigenvalue, observe that λ2/λ1 is strictly less than
one for all ν > 0. Hence show that the free energy per spin in the thermodynamic limit N →∞
is given by

−F/kT = ln(λ1)

(c) What is the spontaneous magnetization per spin for any ν > 0?



14. Statistical Mechanics and Thermodynamics (Spring 2005)

A photon gas in thermal equilibrium is contained within a box of volume V at temperature T .

(a) Use the partition function to find the average number of photons n̄r in the state having energy
Er.

(b) Find a relationship between the radiation pressure P and the energy density u (i.e. the average
energy per unit volume).

(c) If the volume containing the photon gas is decreased adiabatically by a factor of 8, what is the
final pressure if the initial pressure is Po?


