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1 Introduction

It is said that the QED Lagrangian desnity1 is uniquely determined by the conditions

(a) Locality - L(x) only depends on the fields at x, so we can’t do L(x) = mψ̄(x)ψ(x+ c)

(b) Lorentz Invariance

(c) P or T Invariance

(d) Local Gauge Invariance

(e) Renormalizability

What does renormalizability mean? Peskin and Schroeder state on page 481: “...the Lagrangian of a
renormalizable theory can contain no terms of mass dimension higher than 4”. This is deceptive because
all terms must have a mass dimension of four in order for the Lagrangian density to have the units
of an energy density. They implicitly intend the reader to count the mass dimension by neglecting the
dimensions of the coupling constants. This statement can be rephrased as found in Aitchison and Hey page
154, “...theories in which the coupling constant has negative mass dimensions, such as the ‘four fermion’
theory, are not renormalizable.”

2 Local Gauge Invariance

See Peskin and Schroeder section 15.1 where they derive

Dµ = ∂µ + ieAµ(x)

is the covariant derivative on ψ(x), where Aµ(x) is called the connection, or the gauge field, which has the
transformation property

Aµ(x) → Aµ(x)− 1
e
∂µα(x)

under the local gauge transformation
ψ(x) → eiα(x)ψ(x)

Note: The quanta of the gauge field are called gauge bosons.

3 Listing Possible Terms

Each term must satisfy all the constraints listed in the introduction, in addition to

(a) Being scalar

(b) Having mass dimension 4 so that the action S =
∫
L d4x is dimensionless.

1We will sometimes use ‘Lagrangian’ in place of ‘Lagrangian density’ as is commonly found in the literature.



Note that [ψ] = 3/2, [φ] = 1, [Aµ] = 1, [∂µ] = 1, [x] = −1, [m] = 1 (see Peskin and Schroeder page 80,
section 4.1). The ordering of cuts is helpful. First we will generate a list of all possible terms that satisfy
locality, scalar, renormalizability, and gauge invariance. Then we can apply mass dimension and Lorentz
invariance to determine constants. Finally we apply P or T invariance to make the final cut.

Rule: The connection cannot show up unless if it is inside of a covariant derivative. We should try
to prove that that is the only way it can be gauge invariant. The concept is that if you want to have
local gauge invariance, then you can’t introduce derivatives alone or the connection alone, they must come
together in the proper form of the covariant derivative.

We can split the possible terms into two categories, those that contain ψ and those that don’t contain
ψ. At first we don’t specify constants. We can fill them in later based on dimension counting and Lorentz
invariance. Constants will be written as S, V,M for scalar, vector, and matrix.
Case 1: Terms that do not contain ψ
If a term does not contain ψ(x), then it must contain the connection Aµ(x) or else it would be a trivial
constant since otherwise it would be independent of the coordinate x. But as we argued earlier, the
connection must come in the form of the covariant derivative. So we must construct a scalar out of the
covariant derivative. But we can’t have a free derivative in the term because there is no wave function to
act it on. We can get around this problem by using the fact that derivatives commute. We calculate the
commutator

[Dµ, Dν ] = [∂µ + ieAµ(x), ∂ν + ieAν(x)] = [∂µ, ∂ν ] + ie[∂µ, Aν(x)] + ie[Aµ(x), ∂ν ]− e2[Aµ(x), Aν(x)]

Partial derivatives commute, and scalar fields such as A commute so

[Dµ, Dν ]ψ(x) = ie {∂µ(Aν(x)ψ(x))−Aν(x)∂µψ(x) +Aµ(x)∂νψ(x)− ∂ν(Aµ(x)ψ(x))}

[Dµ, Dν ] = ie(∂µAν(x)− ∂νAµ(x))

But now the derivatives are bound, so this is not an operator, it is just a function.

[Dµ, Dν ] = ieFµν(x)

where
Fµν(x) = ∂µAν(x)− ∂νAµ(x)

We automatically know that Fµν(x) is locally gauge invariant because it was constructed out of the covariant
derivative.

SµνFµν

SαβµνFαβFµν

Case 2: Terms that contain ψ
Subcase 1: No derivatives
If you have ψ, then you have to have ψ† somewhere in front of it in order to make a scalar by a dot product.
You can’t use a constant vector to form the dot product because that would destroy gauge invariance.
We cannot have (ψ†ψ)2 because ψ has mass dimension 3/2 and that would violate the renormalizability
condition. We also cannot have Fµν anywhere because it has mass dimension two, which would bring the
total mass dimension of the fields above 4.

Sψ†ψ

ψ†Mψ

Subcase 2: One derivative
Applying the derivative to ψ† is not fundamentally different because ∂µ(ψ†)ψ = (ψ†∂µψ)∗.



Sµψ†Dµψ

ψ†MµDµψ

Subcase 3: More than one derivative
There are no possible terms under this case because it violates the renormalizability condition

4 Lorentz Invariance

Before applying the Lorentz invariance constraint, the potential Lagrangian density looks like

L = Sµν
1 Fµν + Sαβµν

2 FαβFµν + S3ψ
†ψ + ψ†M1ψ + Sµ

4ψ
†Dµψ + ψ†Mµ

2 Dµψ

After requiring Lorentz invariance we can eliminate the third and fifth terms and determine the matrix
constants, at least up to a proportionality constant.

First we show that ψ̄ψ is Lorentz invariant, so that the matrix between ψ† and ψ must be γ0. The
argument given in Sakurai’s Advanced Quantum Mechanics section 3.4 goes as follows.

• Derive the Dirac equation based on the requirement that the operators are Lorentz invariant. This
produces the gamma matrices to begin with.

• We then require the Dirac equation to be fully Lorentz invariant, so wave-function will have to have
a particular transformation rule under Lorentz transformations so as to preserve the exact form of
the Dirac equation. Let S be the operator defined by

ψ′(x′) = Sψ(x)

Then
γµ∂′µψ

′(x′) +mψ′(x′) = 0

γµΛµ
ν∂ν(Sψ) +mSψ = 0

S−1γµSΛµ
ν∂νψ +mψ = 0

S−1γµSΛµ
ν = γν

S−1γµS = γνΛµ
ν

Note that S can be pulled out of the derivative because it corresponds to a Lorentz transformation,
which acts in the same way at all points in spacetime.

• Use this constraint to find
Srot(ω) = cos

(ω
2

)
+ iσij sin

(ω
2

)
SLor(χ) = cosh

(χ
2

)
− σk0 sinh

(χ
2

)
for a rotation by an angle ω or a boost by a velocity β = tan(χ).

• Take the Hermitian conjugate of these expressions

• Obtain the relation
S† = γ0S−1γ0

using the fact that γ0 commutes with σij and anti-commutes with σk0.



• Calculate
ψ̄′(x′) = (ψ′(x′))†γ0 = (Sψ(x))†γ0 = ψ†(x)S†γ0

= ψ†(x)γ0S−1γ0γ0 = ψ̄(x)S−1

• Calculate
ψ̄′(x′)ψ′(x′) = ψ̄(x)S−1ψ(x) = ψ̄(x)ψ(x)

Therefore

S3 = 0 and M1 ∝ γ0

By construction, the Dirac equation is Lorentz invariant, so we know that we need to accompany ∂µ

with γµ (this is the non-rigorous sketch of the argument). Therefore

Sµ
4 = 0 and Mµ

2 ∝ γµ

As for the radiation terms, we know from general relativity that there are only two Lorentz invariant
tensors, the metric and the fully anti-symmetric tensor. On page 24 of Carroll it says “A remarkable
property of the above tensors–the metric, the inverse metric, the Kronecker delta, and the Levi-Civita
symbol–is that, even though they all transform according to the tensor transformation law (1.63), their
components remain unchanged in any inertial coordinate system in flat spacetime. ...In fact these are the
only tensors with this property, although we won’t prove it.” So the second term splits into three cases

Sαβµν
2 ∝ gαµgβν or Sαβµν

2 ∝ gαβgµν or Sαβµν
2 ∝ εαβµν

Note that any other permutation of the indices using just the metric will either be the same or the
negative of one of these terms because Fµν is anti-symmetric. The second option can be eliminated because
it is the trace squared and anti-symmetric tensors have zero trace.

Peskin and Schroeder do not mention the first term. The argument that there are no possible terms
is probably similar to the argument for the last case. If the Sµν

1 is the metric, then the term will be zero
because Fµν is traceless. Terms like m2σµνFµν are not scalar because the σµν are matrices.

5 P/T Invariance

After all cuts except for P/T invariance, there are only four possible terms, where the proportionality
constants were inserted based on dimensional analysis and depend on the system of units used (in the case
of the 1/4).

L4 = ψ̄(i��D)ψ −mψ̄ψ − 1
4
FµνF

µν − cεαβµνFαβFµν

The last term violates P and T invariance. When we drop it, we are left with exactly the QED
Lagrangian.

6 Mini Theorem

If [A,B] commutes with both A and B, then

eAeB = eA+Be[A,B]/2



7 Questions

• Prove whatever theorem is needed from general relativity to limit the number of possibilities for
Sαβµν

2 . It is stated on page 24 of Carroll. What about σµν , does its components change?

• How do we derive the gauge transformation rule for ψ from the gauge transformations found in
electromagnetism?

• Prove or disprove the rule that the only way to introduce Aµ and ∂µ into the Lagrangian density
is in the combination of the covariant derivative. This is probably more mathematical than most
physicists care about, but it does seem reasonably important.

• What about terms with square roots? For example m2
√
FµνFµν . That would be zero because the

photon mass is zero, but we would have to include that case because it has a separate explanation
for why it is not included. Zvi Bern says that this term is probably not renormalizable. The mass
dimension counting heuristic is not a rigorous rule.
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