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1 Schrodinger’s Equation

Schrodinger’s equation governs the time evolution of quantum states. It says that the time dependence of
a state |ψ〉 is given by

Ĥ |ψ〉 = i~
∂

∂t
|ψ〉

where Ĥ is the Hamiltonian of the system. We can prove this equation by constructing a time evolution
operator.
Let’s say that Û(dt) represents an operator that evolves states by an infinitesimal time dt.1 That is

|ψ(t+ dt)〉 = Û(dt) |ψ(t)〉

by definition of Û(dt). We can perform a power series expansion of Û(dt) in the parameter dt

Û(dt) = ĉ0 + ĉ1dt+ ĉ2(dt)2 + · · · = ĉ0 + ĉ1dt

where we have dropped terms of order (dt)2 and higher because the square of an infinitesimal is infinitely
negligible. We also know that U(0) is the identity operator, so we must have ĉ0 = Î.
Now by conservation of probability we must have

〈ψ(t+ dt)| ψ(t+ dt)〉 = 〈ψ(t)| ψ(t)〉

Therefore
〈ψ(t+ dt)| ψ(t+ dt)〉 =

〈
ψ(t)

∣∣∣ (Î + ĉ†1dt)(Î + ĉ1dt)
∣∣∣ψ(t)

〉
=

〈
ψ(t)

∣∣∣ Î + (ĉ†1 + ĉ1)dt
∣∣∣ψ(t)

〉
= 〈ψ(t)| ψ(t)〉 + dt

〈
ψ(t)

∣∣∣ ĉ†1 + ĉ1

∣∣∣ψ(t)
〉

Therefore 〈
ψ(t)

∣∣∣ ĉ†1 + ĉ1

∣∣∣ψ(t)
〉

= 0

and since |ψ〉 is arbitrary, this means that ĉ†1 + ĉ1 = 0, or in other words ĉ1 is anti-Hermitian. We will
rewrite ĉ1 = −iĥ, where ĥ is a Hermitian operator. So we have found

Û(dt) = Î − iĥdt

for some Hermitian operator ĥ.
Now we can write down an expression for the time derivative of states.

∂

∂t
|ψ(t)〉 = lim

dt→0

|ψ(t+ dt)〉 − |ψ(t)〉
dt

= lim
dt→0

Û(dt) |ψ(t)〉 − |ψ(t)〉
dt

= lim
dt→0

(Î − iĥdt) |ψ(t)〉 − |ψ(t)〉
dt

= lim
dt→0

−iĥdt |ψ(t)〉
dt

1We are assuming the existence of such an operator here. Perhaps that could be one of our axioms of quantum mechanics.



= −iĥ |ψ(t)〉

This already looks quite a bit like Schrodinger’s equation, but we don’t know what ĥ is. Let’s specialize
to the case where ĥ is not explicitly time dependent and check to see if it is a conserved quantity. If it is,
then it must be proportional to one of the conserved dynamical quantities: energy, momentum, or angular
momentum. Since it is a scalar quantity because it is invariant under rotations, the two momentum cases
are automatically ruled out, leaving only the possibility of energy, which is what we want. A quantity
corresponding to an operator Ô is conserved if and only if

0 =
∂

∂t

〈
ψ(t)

∣∣∣ Ô ∣∣∣ψ(t)
〉

So we let Ô = ĥ and compute

∂

∂t

〈
ψ(t)

∣∣∣ ĥ ∣∣∣ψ(t)
〉

=
(
∂

∂t
〈ψ(t)|

)
ĥ |ψ(t)〉 + 〈ψ(t)| ĥ

(
∂

∂t
|ψ(t)〉

)
〈
ψ(t)

∣∣∣ (iĥ)ĥ
∣∣∣|ψ(t)〉

〉
+

〈
ψ(t)

∣∣∣ ĥ(−iĥ) ∣∣∣|ψ(t)〉
〉

= 0

So we have found that ĥ corresponds to a conserved scalar dynamical quantity, which means it must be
proportional to energy because this is the definition of energy. We write the operator that corresponds
directly to energy (without any proportionality constant) as Ĥ, where the H stands for Hamiltonian.
The proportionality constant in ĥ is found by requiring that Û(dt) be dimensionless, which means that
ĥdt = (aĤ)dt is dimensionless, so the proportionality constant a must have dimensions of inverse energy
and time. The only fundamental constant that works is 1/~. If we now insert ĥ = Ĥ/~ into our previous
result we obtain

∂

∂t
|ψ(t)〉 = −iĥ |ψ(t)〉 = − i

~
Ĥ |ψ(t)〉

Rearranging gives Schrodinger’s equation

Ĥ |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉


