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We will derive the law of conservation of the third component of isospin (I3) from the Lagrangian for
free nucleons using Noether’s theorem. The Lagrangian density for free nucleons is based on the Dirac
equation as follows, 1

L = ψ̄p(iγµ∂µ −m)ψp + ψ̄n(iγµ∂µ −m)ψn

where ψ̄ ≡ ψ†γ0. Recall that the ψp and ψn are 4-spinors, the first referring to protons and the second
referring to neutrons. In order to make the notation more compact, we can define a column vector of the
two 4-spinors

ψ =
(
ψp

ψn

)
and we notice that L can now be written as

L = ψ̄(iγµ∂µ −m)ψ

because this is

(ψ†
p ψ

†
n)γ0(iγµ∂µ −m)

(
ψp

ψn

)

= (ψ̄p ψ̄n)(iγµ∂µ −m)
(
ψp

ψn

)

= (ψ̄p ψ̄n)
(

(iγµ∂µ −m)ψp

(iγµ∂µ −m)ψn

)
= ψ̄p(iγµ∂µ −m)ψp + ψ̄n(iγµ∂µ −m)ψn = L

Because the proton and neutron wave-functions show up in the same way in this Lagrangian, exchanging
part of the proton field with part of the neutron field will not change the value of the Lagrangian. To get
the strongest constraint, we want to consider the most general form of this invariance, which turns out to
be application of matrices in SU(2) to ψ.2 So changing ψ according to

ψ′ = Uψ (U ∈ SU(2))

leaves the Lagrangian invariant. We say that L has an SU(2) symmetry, which is isospin symmetry in this
case.

In order to turn this into a conservation law for I3 we need to use Noether’s theorem. We will now
provide a proof of a restricted form of Noether’s theorem.3 Say that a field φ is transformed infinitesimally,

φ′(x) = φ(x) + dφ(x)

and assume this transformation does not affect the form of the Lagrangian so that we can rightly call the
transformation a symmetry.4 So we know that the change in the Lagrangian evaluated using the chain
rule will give zero,

1Question: Do we need to worry about the potential due to the strong interaction?
2Todo: Show this!
3Adapted from Peskin and Schroeder page 17.
4It can still be a symmetry if the Lagrangian changes by only a gradient since that would not change the equations of

motion that result from the Euler-Lagrange equations.
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The first square bracket is zero by the Euler-Lagrange equation and the second square bracket is just a
product rule. Therefore we have the conserved current equation

∂µ

(
∂L

∂(∂µφ)
dφ

)
= 0

We can generalize this result slightly to the case where multiple fields are being transformed simultaneously.
We just create a new index i that runs over all fields that are being transformed so

φ′
i(x) = φi(x) + dφi(x)

and the derivation carries through exactly the same with the resulting conserved current expression con-
taining the sum of conserved currents for each field,

∂µ

(
∂L

∂(∂µφi)
dφi

)
= 0

To get a conserved charge, we sacrifice some generality because the local conservation of currents becomes
a mere global conservation of charge. But the sacrifice is justified by the increase in conceptual simplicity.
The expression for conserved charge comes from integrating the current conservation equation over all
space

0 =
∫
∂µ

(
∂L

∂(∂µφi)
dφi

)
d3x
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∫
− ∂

∂t
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The last term is zero by the divergence theorem and the fact that the Lagrangian goes to zero at infinity.
So we get

0 =
∂

∂t

∫ (
∂L

∂(∂0φi)
dφi

)
d3x

which gives a natural definition for a conserved charge as

Q ≡
∫ (

∂L
∂(∂0φi)

dφi

)
d3x

that is clearly constant in time.
Now we can ask what Noether’s theorem tells us about isospin. First we need to check that our

assumptions are satisfied, i.e. does the Lagrangian remain invariant under infinitesimal transformations of
ψ?

L′ = (Uψ)†γ0(iγµ∂µ −m)Uψ

= ψ†U †γ0(iγµ∂µ −m)Uψ

= ψ†γ0(iγµ∂µ −m)U †Uψ



since U commutes with the γ0 because they are acting on different spaces.

= ψ̄(iγµ∂µ −m)ψ = L

since U is unitary because all matrices in SU(2) are unitary. Therefore the Lagrangian does satisfy our
assumptions and we can apply Noether’s theorem. First we compute the derivative of the Lagrangian for
ψp

∂L
∂(∂0ψp)

= ψ†
pγ

0iγ0 = iψ†
p

Similarly the result for ψn is iψ†
n.

Now, if we want to apply an infinitesimal transformation from the SU(2) group, then we want to look
at the generators. Any element U in SU(2) can be expressed as

U = eαiσi

where the σi are the Pauli matrices and the αi are constant coefficients. In this case, the Pauli matrices
are the generators. An infinitesimal transformation is found by shrinking the coefficients to infinitesimal
size and removing terms of second order or higher in infinitesimals,

U = I + dαiσi

where dαi are infinitesimal coefficients.
For simplicity, we choose the diagonal generator, which is σz and apply it with Noether’s theorem. The

only thing the transformation affects is dφ, which is dψ in this case.

dψ(x) = ψ′(x)− ψ(x) = (I + dασz)ψ − ψ

= dασzψ = dα

(
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) (
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)
= dα

(
ψp
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)
Therefore, the conserved charge is

Q ≡
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dψi

)
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Dividing by the constant idα gives

Q =
∫
|ψp|2 − |ψn|2 d3x

= Np −Nn

where Np and Nn are the number of protons and neutrons respectively. This conserved charge is actually
the third component of isospin, so we have shown that the SU(2) symmetry of the Lagrangian implies the
conservation of I3 = Np −Nn through Noether’s theorem.

Thanks go out to Tristan Dennen for teaching me the concepts behind this paper.


