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Introduction

Whenever we make a measurement we obtain a number. For example, by measuring the length of an
object with a ruler, we find the number of tick marks between the two ends of the object. Now this
number has some attached meaning. We cannot add it to the number of ticks of a clock and get a
meaningful result, but we can add it to the number of tick marks from another object to get the length of
the two objects end to end. So when we make a measurement, we don’t call the result a number, we call
it a quantity. A quantity is an expression containing a number plus an additional piece of information
called the units. A unit is a standard quantity which serves as a reference from which all other quantities
can be obtained by applying scale factors. The standard quantity is completely arbitrary, so it is usually
chosen for convenience. In different situations, there may be different units which are more convenient, so
there may be several distinct units that can interchangeably describe the same quantity. For this reason
we introduce the concept of dimension, which assigns a single name to each type of measurement, though
different types of measurements can have the same dimension. It is possible for a unit to have no dimension,
the most common example being angular measurements. Angles are described by a ratio of arc-length to
radius, which causes the dimension of length to cancel, but the radian and degree are standard quantities,
which makes them units.

The notation established by James Clerk Maxwell in the 19th century expresses the quantity X as
X = {X}[X] where {X} is the numerical value and [X] represents the units of the quantity X. The
dimension of a unit U will be written [U], and thus the dimensions of a quantity X will be written [[X]].

A system of units is a set of rules and conventions used to facilitate the reporting of measurements.
Any system of units must satisfy two basic requirements. First, it must be possible to represent the result
of any physical measurement within the system of units. Second, upon rescaling any particular unit, all
equations between measured quantities must remain true.

When forming equations, measured quantities can be added or subtracted only if they have the same
dimensions. However, measured quantities can be multiplied or divided regardless of their dimensions,
with the result having dimensions given by the product or quotient of the original dimensions. This means
that dimensions can sometimes be broken down into factors, which suggests the existence of fundamental
dimensions that cannot be further decomposed. The problem is that there is no mathematical way to
determine which are the fundamental dimensions. Given any set, you can always replace any element with
itself times one of the other elements and still have a set of fundamental dimensions. Therefore we will
have to use our intuition to determine the set which is conceptually simplest. The answer is length, mass,
time, charge, and count. ' To illustrate the ambiguity, consider the MKSA system in which charge is
replaced by current. Current is charge/time, so you can still get the dimension of charge by multiplying
current by time. Mathematically this system works just as well, but conceptually it is more complicated
because charge is an intrinsic property of matter like mass, whereas current can only be meaningful if a
finite duration of time is considered. This additional requirement makes current less fundamental than
charge. The only reason the MKSA system uses current is because it is experimentally easier to measure
current than it is to measure charge, but a system of units should not depend on the arbitrary limits of
modern technology. A fundamental unit is a unit that measures a fundamental dimension. The base
units of the SI system are the meter, kilogram, second, coulomb, and mole. 2

!Temperature is often considered a fundamental dimension, but it can be expressed in terms of energy, which can be
generated from these.
2This is the author’s view, which is not generally accepted.



Constraints

The number of fundamental dimensions in the system of units described above is five. We will call any
system of units with five fundamental dimensions a physical system of units. This term is useful because
there are many systems of units which have fewer fundamental dimensions. This feat is accomplished
by imposing a constraint between two or more base units. Each constraint will reduce the number of
fundamental dimensions by 1. Mathematically, a constraint makes the claim that some fundamental
dimension is a linear combination of the others. For example, probably the most common constraint is
c = 1. In MKSA, this says {c}"* = 1 so0 1s = {c}m, which means that a second is equal to some number of
meters. Now this is completely different from the standard use of the term light-second; the dimension of
a light-second is still length. Here we are actually saying that a light-second is equal to a second, in other
words, seconds and meters are proportional. 3

Now it is not necessary to believe that this is true in order to use it. You can always use such a
convention for shorthand as long as you understand what it means. It does not make sense to truly
think that meters and seconds are proportional. We can tell that meters in one spatial direction are
indistinguishable from meters in a another spatial dimension because we can simply rotate a meter stick
from one direction to another. However, we can not rotate a meter stick into the time dimension, so we
have no empirical reason to suspect that time can be measured in meters.

Information Loss

Any constrained system of units loses information about the dimension of the quantity that can only be
reconstructed with the knowledge of what the proper units should be. An unconstrained system of units
will always present all information about the dimension of any quantity. In practice there is no information
lost in either case because the user will always know what the proper dimension is supposed to be, but it
is best for the system of units to take on the responsibility.

Lets consider natural units with ¢ = h = 1. Then we have
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Therefore M, L, and T can all be expressed in terms of energy or any other single dimension. This is why
information is lost. For example, consider the SI quantity

Xsr = 23 kg*m/s?
kg

m? _ 1, and the operation of multiplying

We can convert this into natural units using {c}* = 1, {h}~%

both sides of the equation by powers of 1.
— 23 kg*{c}3m?/s°

— 23 {c}?/({n}?*s%)
Xnu = 5.5728 x 1094 s73

If this last expression was all you could see, then you would not know much about the real dimension
of X. Notice that we cannot go backwards to retrieve the expression Xg7, so we have executed a one-
way process, indicating the information has been lost. Natural units are not just the result of choosing a
different set of base units, as some people have suggested. In general, the more fundamental dimensions
there are in use, the more work the system of units does for you. In fact, in some problems it is helpful
to assign different fundamental dimensions to different spatial directions. The author believes that the
savings in brevity given by the use of constraints do not outweigh the costs in loss of power and clarity.

3This should not be confused with setting {c} = 1, which is not a constraint, but a rescaling of the units of length or time
or both.



